Readout and delayed transmission of initial afferent V1 activity in decisions about stimulus contrast

  1. Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Peter Kok
    University College London, London, United Kingdom
  • Senior Editor
    Michael Frank
    Brown University, Providence, United States of America

Reviewer #1 (Public review):

General assessment of the work:

In this manuscript, Mohr and Kelly show that the C1 component of the human VEP is correlated with binary choices in a contrast discrimination task, even when the stimulus is kept constant and confounding variables are considered in the analysis. They interpret this as evidence for the role V1 plays during perceptual decision formation. Choice-related signals in single sensory cells are enlightening because they speak to the spatial (and temporal) scale of the brain computations underlying perceptual decision-making. However, similar signals in aggregate measures of neural activity offer a less direct window and thus less insight into these computations. For example, although I am not a VEP specialist, it seems doubtful that the measurements are exclusively picking up (an unbiased selection of) V1 spikes. Moreover, although this is not widely known, there is in fact a long history to this line of work. In 1972, Campbell and Kulikowski ("The Visual Evoked Potential as a function of contrast of a grating pattern" - Journal of Physiology) already showed a similar effect in a contrast detection task (this finding inspired the original Choice Probability analyses in the monkey physiology studies conducted in the early 1990's). Finally, it is not clear to me that there is an interesting alternative hypothesis that is somehow ruled out by these results. Should we really consider that simple visual signals such as spatial contrast are *not* mediated by V1? This seems to fly in the face of well-established anatomy and function of visual circuits. Or should we be open to the idea that VEP measurements are almost completely divorced from task-relevant neural signals? Why would this be an interesting technique then? In sum, while this work reports results in line with several single-cell and VEP studies and perhaps is technically superior in its domain, I find it hard to see how these findings would meaningfully impact our thinking about the neural and computational basis of spatial contrast discrimination.

Summary of substantive concerns:

(1) The study of choice probability in V1 cells is more extensive than portrayed in the paper's introduction. In recent years, choice-related activity in V1 has also been studied by Nienborg & Cumming (2014), Goris et al (2017), Jasper et al (2019), Lange et al (2023), and Boundy-Singer et al (2025). These studies paint a complex picture (a mixture of positive, absent, and negative results), but should be mentioned in the paper's introduction.

(2) The very first study to conduct an analysis of stimulus-conditioned neural activity during a perceptual decision-making task was, in fact, a VEP study: Campbell and Kulikowski (1972). This study never gained the fame it perhaps deserves. But it would be appropriate to weave it into the introduction and motivation of this paper.

(3) What are interesting alternative hypotheses to be considered here? I don't understand the (somewhat implicit) suggestion here that contrast representations late in the system can somehow be divorced from early representations. If they were, they would not be correlated with stimulus contrast.

(4) I find the arguments about the timing of the VEP signals somewhat complex and not very compelling, to be honest. It might help if you added a simulation of a process model that illustrated the temporal flow of the neural computations involved in the task. When are sensory signals manifested in V1 activity informing the decision-making process, in your view? And how is your measure of neural activity related to this latent variable? Can you show in a simulation that the combination of this process and linking hypothesis gives rise to inverted U-shaped relationships, as is the case for your data?

Reviewer #2 (Public review):

Summary:

Mohr and Kelly report a high-density EEG study in healthy human volunteers in which they test whether correlations between neural activity in the primary visual cortex and choice behavior can be measured non-invasively. Participants performed a contrast discrimination task on large arrays of Gabor gratings presented in the upper left and lower right quadrants of the visual field. The results indicate that single-trial amplitudes of C1, the earliest cortical component of the visual evoked potential in humans, predict forced-choice behavior over and beyond other behavioral and electrophysiological choice-related signals. These results constitute an important advance for our understanding of the nature and flexibility of early visual processing.

Strengths:

(1) The findings suggest a previously unsuspected role for aggregate early visual cortex activity in shaping behavioral choices.

(2) The authors extend well-established methods for assessing covariation between neural signals and behavioral output to non-invasive EEG recordings.

(3) The effects of initial afferent information in the primary visual cortex on choice behavior are carefully assessed by accounting for a wide range of potential behavioral and electrophysiological confounds.

(4) Caveats and limitations are transparently addressed and discussed.

Weaknesses:

(1) It is not clear whether integration of contrast information across relatively large arrays is a good test case for decision-related information in C1. The authors raise this issue in the Discussion, and I agree that it is all the more striking that they do find C1 choice probability. Nevertheless, I think the choice of task and stimuli should be explained in more detail.

(2) In a similar vein, while C1 has canonical topographical properties at the grand-average level, these may differ substantially depending on individual anatomy (which the authors did not assess). This means that task-relevant information will be represented to different degrees in individuals' single-trial data. My guess is that this confound was mitigated precisely by choosing relatively extended stimulus arrays. But given the authors' impressive track record on C1 mapping and modeling, I was surprised that the underlying rationale is only roughly outlined. For example, given the topographies shown and the electrode selection procedure employed, I assume that the differences between upper and lower targets are mainly driven by stimulus arms on the main diagonal. Did the authors run pilot experiments with more restricted stimulus arrays? I do not mean to imply that such additional information needs to be detailed in the main article, but it would be worth mentioning.

(3) Also, the stimulus arrangement disregards known differences in conduction velocity between the upper and lower visual fields. While no such differences are evident from the maximal-electrode averages shown in Figure 1B, it is difficult to assess this issue without single-stimulus VEPs and/or a dedicated latency analysis. The authors touch upon this issue when discussing potential pre-C1 signals emanating from the magnocellular pathway.

(4) I suspect that most of these issues are at least partly related to a lack of clarity regarding levels of description: the authors often refer to 'information' contained in C1 or, apparently interchangeably, to 'visual representations' before, during, or following C1. However, if I understand correctly, the signal predicting (or predicted by) behavioral choice is much cruder than what an RSA-primed readership may expect, and also cruder than the other choice-predictive signals entered as control variables: namely, a univariate difference score on single-trial data integrated over a 10 ms window determined on the basis of grand-averaged data. I think it is worth clarifying and emphasizing the nature of this signal as the difference of aggregate contrast responses that *can* only be read out at higher levels of the visual system due to the limited extent of horizontal connectivity in V1. I do not think that this diminishes the importance of the findings - if anything, it makes them more remarkable.

(5) Arguably even more remarkable is the finding that C1 amplitudes themselves appear to be influenced by choice history. The authors address this issue in the Discussion; however, I'm afraid I could not follow their argument regarding preparatory (and differential?) weighting of read-outs across the visual hierarchy. I believe this point is worth developing further, as it bears on the issue of whether C1 modulations are present and ecologically relevant when looking (before and) beyond stimulus-locked averages.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation