Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDieter EbertUniversity of Basel, Basel, Switzerland
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public review):
Summary:
(1) Introduction Hybridogenesis involves one genome being clonally transmitted while the other is replaced by backcrossing. It results in high heterozygosity and balanced ancestry proportions in hybrids. Distinguishing it from other hybrid systems requires a combination of nuclear, mitochondrial, and population-genetic evidence. Hybridogenesis has been identified in only a few taxa (e.g., some fish, frogs, and stick insects), but no new cases have been reported in over a decade. Advancements in high-throughput sequencing now allow for the detection of high individual heterozygosity, which can indicate hybridization, but it is difficult to distinguish hybridogenesis from other similar asexual systems based solely on genome-wide data. To differentiate these systems, researchers look at several key indicators: Presence of pure-species offspring from hybrids (possible only in hybridogenesis); sex ratio (male presence in hybridogenetic systems); nuclear and mitochondrial haplotype sharing with co-distributed parental species; geographic distribution patterns, especially the lack of both parental species in hybrid populations.
(2) What the authors were trying to achieve The paper studies Quasipaa Frogs. Q. robertingeri (narrowly endemic) and Q. boulengeri (widespread), which are morphologically similar and found sympatrically in parts of China. Preliminary RAD-seq data revealed bimodal heterozygosity in Q. boulengeri samples. Some individuals had extremely high heterozygosity, consistent across loci and suggestive of F1 hybrids. These high-heterozygosity individuals had one haplotype from each species. The study investigates the high heterozygosity observed in Quasipaa frogs, particularly in individuals morphologically resembling Q. boulengeri but genetically appearing to be F1 hybrids with Q. robertingeri. The goal is to determine whether these patterns are consistent with hybridogenesis, rather than other atypical reproductive modes. The authors also suggest the hypothesis that hybridogenesis could enable range expansion of an endemic species through hybridization with a widespread relative.
(3) Methods A total of 107 individuals from 53 localities were collected for the study. This sample included 58 sexed adults-27 males and 31 females-as well as a majority of tadpoles. Of these individuals, 31 had previously determined karyotypes. DNA was extracted and sequenced. Individual heterozygosity and ancestry were estimated using bioinformatics tools. F1 hybrids were compared to one of the parental species to examine patterns of fixed heterozygous loci. Mitochondrial DNA was also extracted from sequencing data, and phylogenetic trees were constructed
(4) Results Two groups of individuals were detected based on heterozygosity: one group exhibited high heterozygosity and consisted of F1 hybrids, while the other group showed low heterozygosity, representing pure-species types. The F1 hybrids demonstrated approximately equal ancestry from Q. robertingeri and Q. boulengeri, consistently maintaining a high proportion of heterozygous loci at around 16.7%. In contrast, pure individuals had much lower heterozygosity, approximately 2.9%. F1 hybrids were found across 21 different sites, including both male and female individuals. The presence of numerous fixed heterozygous loci in F1 hybrids confirmed their hybrid origin, and these loci were absent in pure Q. boulengeri samples. F1 individuals typically carried one haplotype from each parental species. There was minimal haplotype sharing between the two pure species, but extensive sharing was observed between F1 hybrids and co-occurring pure-species individuals. In fact, F1 types shared haplotypes with local Q. boulengeri in over 90% of cases, which supports the occurrence of local backcrossing and parental contribution. In terms of mitochondrial DNA, F1 hybrids possessed mitochondrial haplotypes that clustered with Q. boulengeri and often shared these haplotypes directly. Genetic structure and phylogenetic analyses, revealed three distinct genetic clusters corresponding to F1 hybrids, Q. boulengeri, and Q. robertingeri. The F1 hybrids positioned themselves intermediate between the two pure species. Neighbor-joining trees and TreeMix analyses confirmed a strong separation between pure-species types, with F1 hybrids clustering alongside local Q. boulengeri subpopulations, indicating local formation of hybrids.
(5) Discussion In summary, the study reveals hybridogenesis (a reproductive system where hybrids clonally transmit one parental genome) in Quasipaa boulengeri and Q. robertingeri. Hybrids show high genetic heterozygosity and coexist with parental species, ruling out other reproductive modes like parthenogenesis or kleptogenesis. Evidence suggests hybridogenesis enables Q. robertingeri genomes to appear far outside their normal range, possibly aiding range expansion. Chromosomal abnormalities are linked to hybrid hybrids, supporting clonal genome transmission. The genetic divergence between parental species fits patterns seen in other hybridogenetic systems, highlighting a unique, understudied case in East Asia.
Strengths:
Overall, the authors carefully interpret their genetic data to support hybridogenesis as the reproductive mode in this system and propose that this mechanism may aid range expansion. They also appropriately acknowledge the need for further cytogenetic and ecological studies, demonstrating scientific caution. In summary, the discussion reasonably follows from the results, offering cautious interpretation where necessary.
Weaknesses:
Direct reproductive or cytological evidence is still lacking. While alternative reproductive modes are discussed and mostly ruled out logically, some require further empirical testing. The authors maintain a cautious interpretation, appropriately suggesting further research. Some outstanding questions remain.
(1) The elevated heterozygosity and presence of fixed heterozygous loci in hybrids compared to parental species strongly indicate hybridogenesis. However, alternative explanations such as repeated F1 hybridization or some form of balanced polymorphism, while less likely, are not fully excluded.
(2) The coexistence of hybrids and parental species, along with high nuclear and mitochondrial haplotype sharing between hybrids and Q. boulengeri, argues against reproductive modes like parthenogenesis, gynogenesis, or kleptogenesis. However, the assumption that hybrid sterility or multiple local hybrid origins are unlikely could be challenged if undetected local variation or cryptic reproductive strategies exist.
(3) The presence of Q. robertingeri nuclear genomes far outside their known geographic range, genetically linked to nearby populations, fits a hybridogenetic-mediated dispersal model. Although the authors dismiss human-mediated or accidental transport as explanations, these scenarios are not necessarily unlikley.
Reviewer #2 (Public review):
This study describes F1 hybrid frog lineages that use an "unusual" form of reproduction, perhaps hybridogenesis. Identifying such species is important for understanding the biodiversity of reproduction in animals, and animals that do not reproduce via "canonical" sex can be useful model systems in ecology and evolution. The conclusion of the study are based on reduced representation sequencing (RAD-seq with a de-novo assembly of loci) of 107 wild-caught individuals from 53 localities (plus 4 outgroup individuals), including 27 males, 31 females, and 49 juveniles of unknown sex. Conclusive inferences of unusual forms of reproduction typically require breeding studies and parent-offspring genotype comparisons but such information is not available (and perhaps impossible to generate) for the focal frog lineages.
(1) Conclusion 1: there are two pure species and F1 hybrids
The authors infer that there are two lineages RR and BB (corresponding to two named species), and F1 interspecific hybrids RB. This inference is based on the results presented in Figure 1 (PCA, admixture, and heterozygosity analyses) as well as analyses of fixed SNP differences between R and B. I think that this conclusion is well supported; my only comment on this part is that it would be useful to have the admixture plots & cross-validation for the 107 samples with other k values (not only k=2) as a supplemental figure. The plots in the supplemental file S1 are for the subset of 55 inds inferred to be BB only.
(2) Conclusion 2: F1 hybrids most likely reproduce via hybridogenesis
This conclusion is based on the sex ratio of hybrids and haplotype sharing between species and lineages at different, ~150 bp long loci. Parthenogenesis (including sperm-dependent parthenogenesis) is unlikely to generate males, yet sexed F1 hybrid individuals include 18 females and 10 males which prompts the exclusion of parthenogenesis in the present paper. Specific haplotype-sharing patterns are also discussed in the study and used as further support, but these arguments (and the related main and supplementary figures) are difficult to read/interpret. To clarify the arguments related to haplotype sharing and haplotype diversities, I suggest that the authors phase the R and B haplotypes from all their hybrids by using their pure (RR and BB individuals) as references. The concatenated lineage-specific haplotypes can then be used to reconstruct a single phylogenetic tree for all loci (easier to visualize and interpret that the separate haplotype networks for the loci). The authors can then draw cartoon phylogenies for what would be the expected pattern for haplotype clustering and diversity for different reproductive modes, and discuss their observed phylogenies in this regard. Similarly, the migration weights (represented in Figure 4) can then also be computed for separate haplotypes in the hybrids.
However, independently of the outcome of the phasing, it is important to note that there is no a priori reason why all F1 hybrid individuals would reproduce via the same reproductive mode. Notably, work by Barbara Mantovani and Valerio Scali on stick insects has shown that different F1 hybrid lineages involving the same parental species reproduce via hybridogenesis or parthenogenesis. I don't see how the presented data can allow excluding that some F1 hybrid frogs are parthenogenetic while others are hybridogenetic for example.
(3) Conclusion 3: Crosses between hybridogenetic RB males and hybridogenetic RB females gave rise to a new population of RR individuals outside of the RR species range (this new population would correspond to location 30 from Figure 1).
It is not entirely clear to me which data this conclusion is based on, I believe it is the combination of known species ranges for the species R (location 30 being outside of this) and the relatively low heterozygosity of RR individuals at location 30.
However, as the authors point out, the study focuses on an understudied geographic range. Isolated or rare populations of the R species may easily have been overlooked in the past, especially since the R and B species are morphologically difficult to distinguish. Furthermore, an isolated, perhaps vestigial population may also likely be inbred/feature low diversity. It seems most appropriate to discuss different (equally likely) scenarios for the RR population at location 30 rather than implying a hybridogenetic origin of RR individuals. I would also choose a title that does not directly imply this scenario but reflects the solid (not speculative) findings of the study.
Reviewer #3 (Public review):
Summary:
This work reports a new case of hybridogenetic reproduction in the frog genus Quasipaa. Only one other example of this peculiar reproductive mode is known in amphibians, and fewer than a dozen across the tree of life. Interestingly, a population of one of the parental species (Q. robertingeri) was found away from the core of its distribution, within the distribution of the hybridogens. This range expansion might have been mediated by hybridogenesis, whereby two copies of the same parental genome came together again after many generations of hybridogenesis.
Strengths:
Evidence for hybridogenesis is solid. The state of the art would be to genotype parents and offspring, but other known alternative scenarios have been considered carefully and can be ruled out convincingly. In addition, the authors are very careful in their phrasing and made sure to never overinterpret their data.
The explicit predictions under different reproductive modes (and Table 1) are a useful resource for future studies and could inspire new findings of unusual reproductive modes in other taxa.
The sampling is very impressive, with over 50 populations sampled across a very large area.
The comparison of p-distances between pairs of species involved in hybridogenesis is interesting.
Weaknesses:
The current phylogenetic reconstruction with the F1s does not enable to infer the number of origins of hybridogenesis, nor whether the population of Q. robertingeri that was found far from the core of the species' distribution indeed derives from hybridogenesis. This is because some of the signal is driven by the Q. boulengeri haplome, which is replaced every generation and therefore does not reflect the evolutionary history of the lineage.
All known reproductive modes except hybridogenesis can be excluded, but without genotyping parents and offspring, it is impossible to rule out another, yet undescribed reproductive mode.