Abnormal shear stress induces ferroptosis in endothelial cells via KLF6 downregulation

  1. College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ilse Daehn
    Icahn School of Medicine at Mount Sinai, New York, United States of America
  • Senior Editor
    David Ron
    University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

Summary:

The authors used an in vitro microfluidic system where HUVECs are exposed to high, low, or physiologic (normal) shear stress to demonstrate that both high and low shear stress for 24 hours resulted in decreased KLF6 expression, decreased lipid peroxidation, and increased cell death, which was reversible upon treatment with Fer-1, the ferroptosis inhibitor. RNA sequencing (LSS vs normal SS) revealed decreased steroid synthesis and UPR signaling in low shear stress conditions, which they confirmed by showing reduced expression of proteins that mitigate ER stress under both LSS and HSS. Decreased KLF6 expression after exposure to HSS/LSS was associated with decreased expression of regulators of ER stress (PERK, BiP, MVD), which was restored with KLF6 overexpression. Overexpression of KLF6 also restored SLC7A11 expression, Coq10, and reduced c11 bodipy oxidation state- all markers of lipid peroxidation and ferroptosis. The authors then used vascular smooth muscle cells (atherosclerotic model) with HUVECs and monocytes to show that KLF6 overexpression reduces the adhesion of monocytes and lipid accumulation in conditions of low shear stress.

Strengths:

(1) The use of a microfluidic device to simulate shear stress while keeping the pressure constant when varying the shear stress applied is improved and more physiologic compared to traditional cone and shearing devices. Similarly, the utilization of both low and high shear stress in most experiments is a strength.

(2) This study provides a link between disturbed shear stress and ferroptosis, which is novel, and fits nicely with existing knowledge that endothelial cell ferroptosis promotes atherosclerosis. This concept was also recently reported in September 2025, when a publication also demonstrated that LSS triggers ferroptosis in vascular endothelial cells (PMID: 40939914), which partly validates these findings.

Weaknesses:

(1) While HUVECs are commonly used in endothelial in vitro studies, it would be preferable to confirm the findings using an arterial cell line, such as human coronary artery cells, when studying mechanisms of early atherosclerosis. Furthermore, physiologic arterial shear stress is higher than venous shear stress, and different vascular beds have varying responses to altered shear stress; as such, the up- and downregulated pathways in HUVECs should be confirmed in an arterial system.

(2) The authors provide convincing evidence of disturbances in shear stress inducing endothelial ferroptosis with assays for impaired lipid peroxidation and increased cell death that was reversed with a ferroptosis inhibitor. However, more detailed characterization of ferroptosis with iron accumulation assays, as well as evaluating GPX4 activity as a consequence of the impaired mevalonate pathway, and testing for concomitant apoptosis in addition to ferroptosis, would add to the data.

(3) The authors state that KLF2 and KLF4 are not amongst the differentially expressed genes downregulated by reduced shear stress, which is contrary to previous data, where both KLF2 and KLF4 are well studied to be upregulated by physiologic laminar shear stress. While this might be due to the added pressure in their microfluidic system, it also might be due to changes in gene expression over time. In this case, a time course experiment would be needed. It is possible that KLF2, KLF4 and KLF6 are all reduced in low (and high) shear stress and cooperatively regulate the endothelial cell phenotype. Both KLF2 and KLF4 have been shown to be protective against atherosclerosis.

Reviewer #2 (Public review):

Summary:

The manuscript by Cui et al. titled "abnormal shear stress induces ferroptosis in endothelial cells via KLF6 downregulation" investigated in a microfluidic device the effect of 24-hour low, medium, and high shear stress levels upon human vein endothelial cells. The authors found that KLF6 is an important regulator of endothelial cell ferroptosis through the BiP-PERK-Slc7a11 and MVD-ID11-CoQ10 axis under both low and high shear stress, postulating this may explain the spatial preference of atherosclerosis at bifurcations of the arteries.

Strengths:

The main strength of the study is the use of a microfluidic device within which the authors could vary the shear stress (low, medium, high), whilst keeping fluid pressure near the physiological range of 70 mmHg. Deciding to focus on transcription factors that respond to shear stress, the authors found KLF6 in their dataset, for which they provide compelling evidence that endothelial cell ferroptosis is triggered by both excessive and insufficient shear stress, inversely correlating with KLF6 expression. Importantly, it was demonstrated that cell death in endothelial cells during HSS and LSS was prevented through the addition of Fer-1, supporting the role of ferroptosis. Moreso, the importance of KLF6 as an essential regulator was demonstrated through KLF6 overexpression.

Weaknesses:

There are some major concerns with the results:

(1) Inappropriate statistical tests were used (i.e., an unpaired t-test cannot be used to compare more than two groups).
(2) Inconsistencies in western blot normalization as different proteins seem to have been used (GAPDH and B-actin) without specifying which is used when and why this differs.
(3) Absence of transcriptomic analysis on HSS-exposed endothelial cells (which is not explained).

Moreso, the conclusions are predominantly based on an in vitro microfluidic chip model seeded with HUVECs. Although providing mechanistic insight into the effects of shear stress on (venous) endothelial cells, it does not recapitulate the in vivo complexity. The absence of validation (a.o. levels of KLF6) in clinical samples and/or animal models limits the translatability of the reported findings towards atherosclerosis. Among others, assessing the spatial heterogeneity of KLF6 abundance in atherosclerotic plaques depending on its proximity to arterial bifurcations may be interesting.

Points to be addressed:

(1) As a statistical test, the authors report having used unpaired t-tests; however, often three groups are compared for which t-tests are inadequate. This is faulty as, amongst other things, it does not take multiple comparison testing into account.

(2) Both B-Actin and GAPDH seem to have been used for protein-level normalization. Why? The Figure 2HL first panel reports B-actin, whereas the other three report GAPDH. The same applies to Figures 3E-F, where both are shown, and it is not mentioned which of the two has been used. Moreso, uncropped blots seem to be unavailable as supplementary data for proper review. These should be provided as supplementary data.

(3) LSS and MSS were compared based on transcriptomic analysis. Conversely, RNA sequencing was not reported for the HSS. Why is this data missing? It would be valuable to assess transcriptomics following HSS, and also to allow transcriptomic comparison of LSS and HSS.

(4) Actual sample sizes should be reported rather than "three or more". Moreso, it would be beneficial to show individual datapoints in bar graphs rather than only mean with SD if sample sizes are below 10 (e.g., Figures 1B-H, Figure 2G, etc.).

(5) The authors claim that by modifying the thickness of the middle layer, shear stress could be modified, whilst claiming to keep on-site pressure within physiological ranges (approx. 70 mmHg) as a hallmark of their microfluidic devices. Has it been experimentally verified that pressures indeed remain around 70 mmHg?

(6) A coculture model (VSMC, EC, monocytes) is mentioned in the last part of the results section without any further information. Information on this model should be provided in the methods section (seeding, cell numbers, etc.). Moreover, comparison of LSS vs LSS+KLF6 OE and HSS vs HSS+KLF6 OE is shown. It would benefit the interpretation of the outcomes if MSS were also shown. I twould also be beneficial to demonstrate differences between LSS, MSS, and HSS in this coculture model (without KLF6 OE).

(7) The experiments were solely performed with a venous endothelial cell line (HUVECs). Was the use of an arterial endothelial cell line considered? It may translate better towards atherosclerosis, which occurs within arteries. HUVECs are not accustomed to the claimed near-physiological pressures.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation