Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDániel BarabásiHarvard University, Cambridge, United States of America
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public review):
The authors address a set of important and challenging questions at the interface of (developmental) neuroscience, genetics, and computation. They ask how complex neural circuits could emerge from compact genomic information, and they outline a bold vision in which this process might eventually be harnessed to design synthetic biological intelligence through genetic control of synaptogenesis. These are significant and stimulating ideas that merit rigorous theoretical and experimental exploration.
However, the present work does not convincingly engage with these questions at a mechanistic level. Most of the circuit formation aspects appear to be adopted from prior models, and it is not clear how the main methodological modifications-introducing synaptic conductance and stochastic formalisms-provide new conceptual insight into genomic specification of neural circuitry. The manuscript does not include significant biological data or validation to support the proposed framework, and the results provided instead use artificial reinforcement learning benchmarks, which do not appear informative with respect to the biological claims.
Overall, while the manuscript raises intriguing themes and ambitions, the proposed model is conceptually disconnected from the biological problem it purports to address. The strength of evidence does not support the strong interpretative or translational claims, and substantial rethinking of the modeling framework, in particular its validation strategy, would be required for the work to match the claims of our improved understanding of the genomic basis of neural circuit formation and our ability to engineer it.
Reviewer #2 (Public review):
In this manuscript, the authors built upon the Connectome Model literature and proposed SynaptoGen, a differentiable model that explicitly takes into account multiplicity and conductance in neural connectivity. The authors evaluated SynaptoGen through simulated reinforcement learning tasks and established its performance as often superior to two considered baselines. This work is a valuable addition to the field, supported by a solid methodology with some details and limitations missing.
Major points:
(1) The genetic features in the X and Y matrices in the CM were originally introduced as combinatorial gene expression patterns that correspond to the presence and even absence of a subset of genes. The authors oversimplify this original scope by only considering single-gene expression features. While this was arguably a reasonable first approximation for a case study of gap junctions in C. elegans, it is by no means expected to be a plausible expectation for chemical synapses. As the authors appear to motivate their model by chemical synapses that have polarities, they should either consider combinatorial rules in the model or at least present this explicitly as a key limitation of the model. Omitting combinatorial effects also renders the presented "bioplausible" baseline much less bioplausible, likely calling for a different name.
(2) It is not fully explained how Equation (11) is obtained, even conceptually. It is unclear why \bar{B} and \bar{G} should be element-wise multiplied together, both already being expected values. Moreover, the authors acknowledged in lines 147-149 that the components of \bar{G} actually depend on gene expression X, which is a component in \bar{B}, so the logic here seems circular.
(3) The authors considered two baselines, namely SNES and a bioplausible control. However, it would be of interest to also investigate: a) Vanilla DQN with the same size trained on the same MLP, to judge whether the biological insights behind SynaptoGen parameterization add value to performance. b) Using Equation (7) instead of Equation (11) to construct the weight matrices, to judge whether incorporating the conductance adds value to performance.
Reviewer #3 (Public review):
Summary
Boccato et al. present an ambitious and thoughtfully developed framework, SynaptoGen, which proposes a differentiable model of synaptogenesis grounded in gene-expression vectors, protein interaction probabilities, and conductance rules. The authors aim to bridge the gap between computational connectomics and synthetic biological intelligence by enabling gradient-based optimization of genetically encoded circuit architectures. They support this goal with mathematical derivations, simulation experiments across several RL benchmarks, and a biologically grounded validation using C. elegans adhesion-molecule co-expression data. The paper is timely and conceptually compelling, offering a unified formulation of synaptic multiplicity and synaptic weight formation that can be integrated directly into learning systems.
Strengths
(1) Well-motivated framework with clear conceptual contributions.
(2) Rigorous mathematical development.
(3) Compelling empirical validation.
(4) Excellent framing and discussion of future impact.
Weaknesses
(1) Overstated claims in the abstract and discussion.
(2) Ambiguity in "first of its kind" assertions.