Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorVatsala ThirumalaiNational Centre for Biological Sciences, Bangalore, India
- Senior EditorClaude DesplanNew York University, New York, United States of America
Reviewer #1 (Public review):
Summary:
The manuscript by Hernandez-Nunez et al. provides a comprehensive characterization of how heart-brain circuits develop in a vertebrate brain, namely the zebrafish. The characterization is performed using a combination of modern and sophisticated imaging and neural manipulation techniques and achieves unprecedented clarity and detail in how the heart-brain communication develops early in life. The paper describes a three-stage program, where first an efferent-circuit from the motor vagus to the heart develops, followed by sympathetic innervation, and lastly sensory neurons innervate the heart.
Strengths:
The paper is very clearly and nicely written. The findings are novel and of high quality and relevance. The presentations are very clear and nicely interpreted. The analyses are well presented and applied.
Weaknesses:
From the heart rate traces, heart rate variability seems to be prominent and changes across days post-fertilization (dpf). That would be a useful dependent variable, considering that the variation captured by the models does not fully explain heart rate, both for sympathetic and parasympathetic efferents. Given the strong autorhythmicity of nodal tissue in neurogenic hearts, modulatory inputs could potentially predict heart rate variability with higher precision.
Reviewer #2 (Public review):
Hernandez-Nunez et al. investigate the development and function of neural circuits involved in the regulation of heart rate in larval zebrafish. Using conserved genetic markers, they identify neural pathways involved in the bidirectional control of heart rate and in providing sensory feedback, potentially enabling more precise tuning. The main observation is that the different elements of this circuit are laid down in a developmentally staggered manner.
At 4 days old, the heart rate is invariant to a range of sensory stimuli, and the vagal motor or sympathetic pathways could not be seen to innervate the heart. Progressively through development, the heart is first innervated by the vagal motor pathway, whose axons are cholinergic, before the formation of phox2bb+ intracardiac neurons (ICNs). At this stage, before the first ICNs are observed, activation of the vagal motor pathway by optogenetic activation of a localized population of cholinergic hindbrain neurons leads to bradycardia. After the vagal motor innervation begins, the sympathetic pathway innervates the heart, which could be visualized in the form of TH+ fibers from the anterior paravertebral ganglia (APG). The activity of the TH+ APG neurons was diverse and showed proportional, integral, and derivative-like relationships to the heart rate, suggesting a role in more precise tuning of the rate than what could be achieved through the vagal pathway alone. The sensory vagus innervation of the heart was identified to be the last stage to develop; however, neurons in the nodose ganglion exhibited diverse responses tuned to the heart rate well before the innervation reached the heart. The authors attribute this to the fact that other indirect sensory cues from the gills or vasculature could be used to sense heart rate prior to innervation.
This study identifies key components of the control loop required for the regulation of heart rate in zebrafish. The control mechanism appears to be independent of the cues that trigger heart rate changes, indicating that the circuit is indeed part of an interoceptive pathway for heart rate control. Evidence for the staggered development of the vagal-motor, sympathetic, and sensory pathways is conclusive, and as the authors discuss, this phenomenon progressively allows for finer-grained control of the heart rate. This could be achieved through proportional-integral-derivative-like control properties emerging in a diverse set of neurons in the APG and sensory feedback of the state of the heart. In line with these findings, the baseline variability of heart rate prior to innervation at 4 days old appears to be comparatively lower than the later stages (Figure 1C, D, Supplementary Figure 1C-F) and increases over development.
Based on this observation and the time courses of the kernels identified by the GLMs, I would expect heart rate fluctuations of a finer time scale, ultimately limited by the time course of GCaMP6s, to be captured by the models in Figures 3, 5, and 7, in addition to the stimulus-locked changes that are highlighted. While the models yield valuable insight in the form of the activation kernels and their potential roles, in one instance, this captures the potential contribution of either the motor vagus or the APG to the change in heart rate. This makes it challenging to identify where it falls short and the potential functions of pathways that are yet to be discovered.
Lastly, the proposed anatomical connectivity of the heart-brain circuit is based on tracts observed in this study as well as those inferred from function and from previous studies.
(1) It is not clear from the images presented here whether the VSNs send feedback projections to the brainstem VPN.
(2) Do the brainstem neurons identified by their functional roles send efferent projections via the motor vagus nerve? This is unclear from the results presented and needs to be clarified in the text.
(3) Add appropriate clarifying annotations to Figure 9 and a section of text discussing the potential unknowns in the proposed circuit diagram.