Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorKaren ForbesUniversity of Leeds
- Senior EditorWendy GarrettHarvard T.H. Chan School of Public Health, Boston, United States of America
Reviewer #1 (Public review):
Summary:
Morgan et al. studied how paternal dietary alteration influenced testicular phenotype, placental and fetal growth using a mouse model of paternal low protein diet (LPD) or Western Diet (WD) feeding, with or without supplementation of methyl-donors and carriers (MD). They found diet- and sex-specific effects of paternal diet alteration. All experimental diets decreased paternal body weight and the number of spermatogonial stem cells, while fertility was unaffected. WD males (irrespective of MD) showed signs of adiposity and metabolic dysfunction, abnormal seminiferous tubules, and dysregulation of testicular genes related to chromatin homeostasis. Conversely, LPD induced abnormalities in the early placental cone, fetal growth restriction, and placental insufficiency, which were partly ameliorated by MD. The paternal diets changed the placental transcriptome in a sex-specific manner and led to a loss of sexual dimorphism in the placental transcriptome. These data provide a novel insight into how paternal health can affect the outcome of pregnancies, which is often overlooked in prenatal care.
Strengths:
The authors have performed a well-designed study using commonly used mouse models of paternal underfeeding (low protein) and overfeeding (Western diet). They performed comprehensive phenotyping at multiple timepoints, including the fathers, the early placenta, and the late gestation feto-placental unit. The inclusion of both testicular and placental morphological and transcriptomic analysis is a powerful, non-biased tool for such exploratory observational studies. The authors describe changes in testicular gene expression revolving around histone (methylation) pathways that are linked to altered offspring development (H3.3 and H3K4), which is in line with hypothesised paternal contributions to offspring health. The authors report sex differences in control placentas that mimic those in humans, providing potential for translatability of the findings. The exploration of sexual dimorphism (often overlooked) and its absence in response to dietary modification is novel and contributes to the evidence-base for the inclusion of both sexes in developmental studies.
Weaknesses:
The data are overall consistent with the conclusions of the authors. The paternal and pregnancy data are discussed separately, instead of linking the paternal phenotype to offspring outcomes. Some clarifications regarding the methods and the model would improve the interpretation of the findings.
(1) The authors insufficiently discuss their rationale for studying methyl-donors and carriers as micronutrient supplementation in their mouse model. The impact of the findings would be better disseminated if their role were explained in more detail.
(2) It is unclear from the methods exactly how long the male mice were kept on their respective diets at the time of mating and culling. Male mice were kept on the diet between 8 and 24 weeks before mating, which is a large window in which the males undergo a considerable change in body weight (Figure 1A). If males were mated at 8 weeks but phenotyped at 24 weeks, or if there were differences between groups, this complicates the interpretation of the findings and the extrapolation of the paternal phenotype to changes seen in the fetoplacental unit. The same applies to paternal age, which is an important known factor affecting male fertility and offspring outcomes.
(3) The male mice exhibited lower body weights when fed experimental diets compared to the control diet, even when placed on the hypercaloric Western Diet. As paternal body weight is an important contributor to offspring health, this is an important confounder that needs to be addressed. This may also have translational implications; in humans, consumption of a Western-style diet is often associated with weight gain. The cause of the weight discrepancy is also unaddressed. It is mentioned that the isocaloric LPD was fed ad libitum, while it is unclear whether the WD was also fed ad libitum, or whether males under- or over-ate on each experimental diet.
(4) The description and presentation of certain statistical analyses could be improved.
(i) It is unclear what statistical analysis has been performed on the time-course data in Figure 1A (if any). If one-way ANOVA was performed at each timepoint (as the methods and legend suggest), this is an inaccurate method to analyse time-course data.
(ii) It is unclear what methods were used to test the relative abundance of microbiome species at the family level (Figure 2L), whether correction was applied for multiple testing, and what the stars represent in the figure. 3) Mentioning whether siblings were used in any analyses would improve transparency, and if so, whether statistical correction needed to be applied to control for confounding by the father.
Reviewer #2 (Public review):
Summary:
The authors investigated the effects of a low-protein diet (LPD) and a high sugar- and fat-rich diet (Western diet, WD) on paternal metabolic and reproductive parameters and feto-placental development and gene expression. They did not observe significant effects on fertility; however, they reported gut microbiota dysbiosis, alterations in testicular morphology, and severe detrimental effects on spermatogenesis. In addition, they examined whether the adverse effects of these diets could be prevented by supplementation with methyl donors. Although LPD and WD showed limited negative effects on paternal reproductive health (with no impairment of reproductive success), the consequences on fetal and placental development were evident and, as reported in many previous studies, were sex-dependent.
Strengths:
This study is of high quality and addresses a research question of great global relevance, particularly in light of the growing concern regarding the exponential increase in metabolic disorders, such as obesity and diabetes, worldwide. The work highlights the importance of a balanced paternal diet in regulating the expression of metabolic genes in the offspring at both fetal and placental levels. The identification of genes involved in metabolic pathways that may influence offspring health after birth is highly valuable, strengthening the manuscript and emphasizing the need to further investigate long-term outcomes in adult offspring.
The histological analyses performed on paternal testes clearly demonstrate diet-induced damage. Moreover, although placental morphometric analyses and detailed histological assessments of the different placental zones did not reveal significant differences between groups, their inclusion is important. These results indicate that even in the absence of overt placental phenotypic changes, placental function may still be altered, with potential consequences for fetal programming.
Weaknesses:
Overall, this manuscript presents a rich and comprehensive dataset; however, this has resulted in the analysis of paternal gut dysbiosis remaining largely descriptive. While still valuable, this raises questions regarding why supplementation with methyl donors was unable to restore gut microbial balance in animals receiving the modified diets.