CROP2, a Retriever-PROPPIN Complex Mediating Protein Export from Endosomes to the Plasma Membrane

  1. Department of Immunobiology, University of Lausanne, Lausanne, Switzerland

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Francesca Bottanelli
    Freie Universität Berlin, Berlin, Germany
  • Senior Editor
    Felix Campelo
    Universitat Pompeu Fabra, Barcelona, Spain

Reviewer #1 (Public review):

WIPI1 is a PROPPIN family protein that has been implicated in Retromer-mediated membrane fission events. Although the cargos that it has been tested to be important for are diverse, one of the cargos that is unaffected is Beta1-Integrin. This leads the authors to assess another PROPPIN family protein - WIPI2, which is a homolog of WIPI1. KD using siRNA is effective and had no consequences on LAMP1, EGFR trafficking or GLUT1 trafficking. Integrin-B1, however, had a large and significant defect in its recycling from the endosome, with a clear endosomal colocalisation. Complementation experiments with WT WIPI2 recovered the phenotype, but various mutant WIPI2 complements resulted in elongated tubules, and there was also a dominant negative effect of the mutant. Integrin is a classic retreiver cargo, so the authors rationalise that WIPI2 may be playing a role with retreiver that WIPI1 plays with retromer. To assess this, they perform a set of immunoprecipitations. SNX17, the retreiver-associated sorting nexin, co-IPs with WIPI2 in a VPS26C-dependent manner. VPS26C but not VPS26 co-IPs with WIPI2, and the reciprocal with WIPI1. These interactions were not present for the FSSS mutation of WIPI2. WIPI2 localises to Rab11 endosomes mainly, as does retriever. Mutations of WIPI2 not only affected WIPI2 localisation, but also VPS35L mutations, indicating that there is a functional relationship between the two.

On the whole, I find the manuscript compelling. The manuscript is very clearly written, the results are convincing and well performed. The flow of experiments is logical, and although not comprehensive in the subsequent mechanistic understanding, the fundamental findings are important and convincing. My comments below are, on the whole, minor and are intended to support the communication of the findings to the field.

(1) The IP interaction data were convincing; however, for me and some others, an interaction is only convincing when performed in vitro, and understood at a structural level. I do not suggest the authors do that in this case; however, I think, at a minimum, some sensible moderation of claims would be useful here.

(2) I found the final localisation data and its interpretation confusing. My interpretation of that data would not be that the retreiver is relocalised, but rather that there is less of both recruited to the membrane and the remaining localisation distribution is shifted. In addition, I am not quite sure of the model here - is the idea that WIPI2 recruits retreiver, if that is the case, I find it hard to resolve with its role as a mediator of fission. Clarity would be appreciated here.

(3) I am concerned that the repeats being compared for statistical analysis are not biological repeats but technical repeats (cells in the same experiment). I should think the idea of the statistical comparison is to show experimental reproducibility and variability across biological repeats. Therefore, I would expect an appropriate number of biological repeats (3 or more minimum), to be the data compared in the statistical analysis and graphs. I think it is appropriate to average the technical repeats from each biological repeat. I find these to be useful resources https://doi.org/10.1083/jcb.202401074, https://doi.org/10.1083/jcb.200611141

Reviewer #2 (Public review):

Summary:

The manuscript from De Leo and Mayer presents evidence that the PROPPIN protein, WIPI2, associates with the Retriever complex, and is required for the proper transport of the SNX17-Retriever cargo, beta1-integrin. This finding fits with prior papers from the Mayer lab, which showed that a related PROPPIN, WIPI1, is required for the transport of some SNX27-Retromer cargo, including GLUT1. The retromer and retriever complexes are architecturally similar. Importantly, they act at the same endosomes, and each transports cargo from endosomes to the plasma membrane. Thus, the possibility that each also requires a structurally related PROPPIN is of interest. However, the manuscript is incomplete, and the main claims are only partially supported.

Strengths:

The topic that PROPPIN proteins are important for the function of the Retromer and Retriever complexes expands our view of the trafficking complex.

Weaknesses:

Many important controls are missing. Several points that are made in the manuscript are only supported through a single approach.

Reviewer #3 (Public review):

Summary:

The manuscript of Mayer and colleagues analyzes the function of WIPI proteins in mammalian cells. The authors previously identified CROP as a complex consisting of WIPI1 and the retromer complex, primarily in yeast cells. In mammalian cells, both WIPI1 and WIPI2 exist, whereas retromer has a homologous complex termed retriever. They now find that WIPI2 can form a complex with retriever subunits. They named this complex CROP2. Their data further indicate that CROP2 and CROP1 have distinct substrate specificities as knockdown of CROP2 subunits affects beta1 integrin sorting, whereas knockdown of CROP1 affects EGFR and GLUT1. They further identify a similar sequence (FSSS) in both WIPI1 and WIPI2, which is required for their specific binding to retromer and retriever.

Strengths:

CROP1 and CROP2 seem to use similar features for their formation, and have different substrates, which is convincingly shown.

Weaknesses:

The analysis lacks information that this is a complex as claimed. It can be deduced from the interaction analysis, but was not shown.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation