Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMaría Isabel GeliInstitute for Molecular Biology of Barcelona, Barcelona, Spain
- Senior EditorSofia AraújoUniversitat de Barcelona, Barcelona, Spain
Joint Public Review:
Pippadpally et al. investigate how the conserved E3 ubiquitin ligase Highwire (Hiw/Phr1), a well-established negative regulator of synaptic growth, is functionally and spatially regulated. Using a GFP-tagged Hiw transgene in Drosophila, the authors report that disruption of endocytosis via loss of AP-2, synaptojanin, or Rab11-mediated recycling endosome function leads to accumulation of Hiw in neuronal cell bodies as enlarged foci, altogether accompanied by synaptic overgrowth. Provided that the Hiw foci are sensitive to aliphatic alcohol treatment, the authors propose that impaired endocytosis promotes liquid-liquid phase separation of the E3 ubiquitin ligase, reducing its ability to degrade the MAPKKK Wallenda and thereby activating JNK signalling. Crosstalk with BMP signalling and roles for autophagy are also explored within this framework.
Strengths
The work provides a novel tool, the GFP-tagged Hiw transgene, to study the spatio-temporal regulation of the E3 ubiquitin ligase Highwire (Hiw/Phr1) in Drosophila, and its impact on synaptic growth. The results presented point to a potentially thought-provoking connection between endocytic defects, Hiw condensation, Hiw down-regulation and synaptic overgrowth. The specific effects of the endocytic mutants on the redistribution of the Hiw to the neuronal cell body and the genetic interactions between the endocytosis and JNK pathway mutants are convincing.
Weaknesses
Several conclusions are insufficiently supported at this point. For example, evidence that the Hiw foci represent bona fide liquid-liquid phase (LLP) separated condensates is limited. Sensitivity to 1,6-hexanediol is not definitive proof of their liquid condensate nature, and their recovery kinetics after 1,6-hexanediol wash-out and their morphology are inconsistent with a pure liquid behaviour. Furthermore, the claim that the Hiw foci are non-vesicular is not strongly supported, as it is only based on the lack of colocalization with a handful of endosomal proteins.
Importantly, the appearance of the putative condensates is correlative rather than causative for synaptic overgrowth, and in the absence of a mechanistic link between endocytosis and Hiw condensation, the causality is difficult to address. Of note is that the putative condensates are already present (albeit to a lesser extent) in the absence of endocytic defects and that the conclusions rely heavily on overexpressed GFP-Hiw, which may perturb normal protein behaviour and artificially induce condensation or aggregation.
The use of hypomorphic mutants in genetic experiments also introduces some ambiguity in their interpretation, as the results may reflect dosage effects from multiple pathways rather than pathway order. Finally, the manuscript would benefit from a more comprehensive reference to relevant literature on JNKKKs and BMP signalling, as well as on the recycling endosome function in synaptic growth and the regulation of the aforementioned pathways.
Overall, while the work presents thought-provoking observations and a potentially interesting regulatory model, additional experimental rigor and broader contextualization are needed to substantiate the proposed mechanism and its biological relevance.