Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAmit SinghIndian Institute of Science, Bangalore, India
- Senior EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
Reviewer #1 (Public review):
Summary:
In this manuscript, Bisht et al. investigate the role of PPE2, a Mycobacterium tuberculosis (Mtb) secreted virulence factor, in adipose tissue physiology during tuberculosis (TB) infection. Previous work by this group established the significance of PPE proteins in Mtb virulence and their role in modulating the innate immune response. Here, the authors present compelling evidence that PPE2 regulates host cell adipogenesis and lipolysis, thereby establishing a link to the development of insulin resistance during TB infection. These fundamental findings demonstrate, for the first time, that a bacterial virulence factor is directly involved in the profound body fat loss, or "wasting," which is a long-established clinical symptom of active TB.
Key Strengths:
The confidence in the major findings of this study is significantly strengthened by the authors' comprehensive approach. They judiciously employ multiple experimental systems, including:
(1) Purified PPE2 protein.
(2) A non-pathogenic Mycobacterium strain engineered to express PPE2.
(3) A pathogenic clinical Mtb strain (CDC1551) utilizing a targeted PPE2 deletion mutant.
(4) While the presence of Mtb in adipose tissues in human and animal models is well-documented, this study is groundbreaking in demonstrating that an Mtb virulence-associated factor actively modulates host fatty acid metabolism within the adipose tissue.
Key Weakness:
Although the manuscript provides solid evidence associating the presence of PPE2 with transcriptional changes in host fatty acid machinery within the adipose tissue, the underlying mechanistic details remain elusive. A focused, deep mechanistic follow-up study will be essential to fully appreciate the complex biological implications of the findings reported here.
Reviewer #2 (Public review):
Summary:
In the manuscript entitled "The PPE2 protein of Mycobacterium tuberculosis is responsible for the development of hyperglycemia and insulin resistance during tuberculosis" the authors identify PPE2, a secretory protein of Mycobacterium tuberculosis, as a modulator of adipose function. They show that PPE2 treatment in mice causes fat loss, immune cell infiltration into adipose, reduced gene expression of PPAR-γ, C/EBP-α, and adiponectin, and glucose intolerance. Overall, the authors link PPE2 with adipose tissue perturbation and insulin resistance following infection with M. tuberculosis. PPE2, a secretory protein of Mycobacterium tuberculosis, is a modulator of adipose function. They show that PPE2 treatment in mice causes fat loss, immune cell infiltration into adipose, reduced gene expression of PPAR-γ, C/EBP-α, and adiponectin, and glucose intolerance. Overall, the authors link PPE2 with adipose tissue perturbation and insulin resistance following infection with M. tuberculosis.
Strengths:
While it is known that M. tuberculosis persists in adipose, the mycobacterial factors contributing to adipose dysfunction are unknown. The study uses multiple mechanisms, including recombinant purified protein, non-pathogenic mycobacterium expressing PPE2, and a clinical strain of M. tuberculosis depleted of PPE2, to show that PPE2 may play an important role in causing fat loss, lipolysis, and insulin resistance following infection. The authors show that PPE2, through unknown mechanisms, decreases gene expression of proteins involved in adipogenesis. Although the mechanisms are unclear, this study advances the field as it is the first to identify a secreted factor (PPE2) from M. tuberculosis to play a role in disrupting adipose tissue.
Weaknesses:
There is a lack of completeness amongst the figures that greatly diminishes the claims and impact of the manuscript. For example, in Figures 2 and 5, the authors measure adipocyte area in H&E-stained adipose tissue to show adipose hypertrophy. However, this was not completed in Figures 3 and 4 despite the authors claiming that treatment with rPPE2 induces adipose hypertrophy. It is unclear why the adipocyte area was not measured in these figures, and having this included would support the author's claim and strengthen the manuscript. The same is true for immune cell infiltration, where the authors say there is increased immune cell infiltration following PPE2 treatment. This is based on H&E staining, but the data supporting this is limited. Although the authors measure CD3+ T cell infiltration in adipose tissue from mice infected with the clinical strain where PPE was depleted, staining was performed in only this experiment. Completing these experiments by showing data to support that PPE2 induces immune cell infiltration would greatly strengthen the manuscript.
The authors state that a Student's t-test was performed to calculate the significance between two samples. However, there is no discussion of what statistical method was used when there were more than 2 groups, which occurs throughout the manuscript, such as in Figure 5, where 4 groups are analyzed. Having the appropriate statistical analysis is important for the impact of the manuscript.
Reviewer #3 (Public review):
Summary:
In this manuscript titled "The PPE protein of Mycobacterium tuberculosis is responsible for the development of hyperglycemia and insulin resistance during tuberculosis", Bisht et al describe that PPE2 protein from Mtb is a key modulator of adipose tissue physiology that contributes to the development of insulin resistance. The authors have used 3T3-L1 preadipocyte cell lines, M. smegmatis overexpression strain, mice model, and genetically modified Mtb deletion strains to demonstrate that PPE promotes persistence in adipose tissue and regulates glucose homeostasis. Using qPCR and RNA-seq experiments, the authors demonstrate that PPE2 regulates the expression of key genes involved in adipogenesis.
Strengths:
Using purified protein, the authors show that PPE2 regulates adipose tissue physiology, and this effect was neutralised in the presence of anti-PPE2. The expression of several adipogenic markers was also reduced in 3TL-1 adipocytes treated with rPPE2 and in mice infected with M. smegmatis strains overexpressing PPE2. Using a mouse model of infection, the authors show that PPE2 contributes to enhanced mycobacterial survival within fat tissues. The authors also show infiltration of immune cells in the fat tissues of mice infected with wild-type and ppe2-complemented strains compared to the ppe2 KO strain. In order to gain a better mechanistic understanding of how PPE2 regulates adipogenesis, the authors employed an RNA-seq approach and identified 191 genes that were significantly differentially expressed in the fat tissues of mice infected with wild-type and ppe2 KO Mtb strains. The differentially expressed genes included transcripts encoding for proteins involved in chemokine/cytokine signalling, ER stress response. The expression of a few of these markers was also validated by qPCR and western blot analysis. Finally, the authors also show that PPE2 promotes lipolysis by reducing phosphodiesterase levels and activating PKA-HSL signalling. The experimental design is overall reasonable, and the methods used are reliable. Overall, the current study did provide some new information on the contribution of PPE2 in regulating adipose tissue physiology.
Weaknesses:
(1) The authors have used several methodologies to show that PPE2 regulates adipose tissue physiology and glucose homeostasis. But the exact mechanism is still not clear.
(2) Mtb encodes several PE/PPE proteins? The authors have used PPE2 for their study. Will secretory PPE2 homologs also regulate similar cellular processes?
(3) How do the authors rule out that the differences observed in the fat tissues of mice infected with wild-type and mutant strains are not associated with reduced bacterial burdens? Is it possible to include another Mtb attenuated strain as a control in mice experiments for few critical experiments?