Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAgnieszka ChacinskaIMol Polish Academy of Sciences, Warsaw, Poland
- Senior EditorJonathan CooperFred Hutch Cancer Center, Seattle, United States of America
Reviewer #1 (Public review):
This manuscript by Toczyski and colleagues explores the role of ubiquitin-dependent degradation in the co-regulation between pro- and anti-apoptotic proteins. The binding of the pro-apoptotic sensor Bim to BCL2 anti-apoptotic proteins sequesters it into inactive complexes, inhibiting BCL2 members but also preventing Bim from activating the apoptotic executors BAX and BAK. The authors now suggest that the E3 ubiquitin ligase Cul5-Wsb2 targets Bim turnover while in complex with BLC2 members. The authors reveal the importance of WSB2 in apoptosis of neuroblastoma cell lines, highlighting the importance of Wsb2 as a cancer biomarker. In sum, this study identifies Bim as a novel Wsb2 target and suggests a novel co-receptor mechanism using BCL-2 members as bridging factors, thus adding a novel mechanistic layer to the apoptosis repressor role of Wsb2. Their experimental approach is sound, and in most cases, the conclusions are justified. However, whether Cul5-Wsb2 targets Bim via BLC2 anti-apoptotic members would require further analysis.
Major comments:
(1) They find that Wsb2 or Cul5 downregulation increases the levels of Puma and Bim isoforms, and that Wsb2 strongly interacts with all Bim isoforms. Moreover, Wsb2 regulates Bim turnover, especially visible for Bim-EL, and controls Bim-L ubiquitylation. Finally, Figure 2E suggests that Wsb2-Bim interaction is bridged by Bcl-xL, and they identify the domain in Bcl-xL/Wsb2 responsible for their binding in Figure 4A-E. However, Figure 4F shows only a mild decrease between Bim-EL and HA-Wsb2EEE, which is inconsistent with their model. This important gap should be backed up by further experimental evidence. For example, by performing (a) coIP studies between Bim and Wsb2 in the presence of Bcl-xlAAA and (b) Bim stability and ubiquitylation analysis in the presence of either Bcl-xlAAA or Wsb2EEE.
(2) The manuscript lacks quantifications and statistical analysis in most figures, which are particularly important for Figure 1D - especially regarding the upregulation of Puma and Bim isoforms upon downregulation of Cul5 and Wsb2, for Fig 3A - also including statistical analyses of Bim1 stability in presence or absence of proteasomal inhibitors, and for Figure 4D, F, especially regarding the interaction of Bim-EL- with WT and mutant Bcl-xL in 4D and with WT and mutant Wsb2 in 4F.
(3) The localization of BCL2 family members at the mitochondrial outer membrane is a crucial step in the implementation of apoptosis, and BCL2 members recruit Bim to the OM. Despite their finding suggesting that Bim insertion into the OM might be dispensable for interaction with Bim, the interaction was abolished by BH3-mimetics that disrupt Bcl-xL interaction with BIM. This suggests that Wsb2 interacts with Bim at the mitochondrial surface. Therefore, it would be interesting to investigate the sub-cellular localization Bim and WSB2 with and without ABT-263.
(4) Wsb2 mildly interacts with Bcl-xL and with Mcl1, but does not interact with Bcl-w or Bcl2. However, they show that Wsb2 recognizes Bcl-xl through a motif conserved between Bcl-xl, Bcl-w and Bcl2. Therefore, it would be helpful to precipitate Bcl-w or Bcl2 and check interaction with Wsb2.
Reviewer #2 (Public review):
Summary
This manuscript proposes an original and conceptually interesting model in which anti-apoptotic BCL-2 family proteins, particularly BCL-XL and MCL-1, not only sequester BIM but also act as adaptor "co-receptors" that recruit BIM to the CUL5-WSB2 ubiquitin ligase complex for degradation. The authors present a mechanistic framework supported by structure-guided mutagenesis, BH3 mimetic perturbations and co-immunoprecipitation assays performed in RPE1 cells. In parallel, the study shows that neuroblastoma cell lines are highly dependent on WSB2 for survival. These observations give the work both conceptual and translational relevance.
Strengths
The principal strength of the study lies in its conceptual novelty. Reframing BCL-XL and MCL-1 not only as sequestration factors but also as adaptors that facilitate substrate engagement by an E3 ligase substantially extends current models of apoptotic regulation. The mechanistic narrative developed in RPE1 cells is clear and internally consistent: the combination of AlphaFold-guided motif identification with complementary mutagenesis provides a persuasive framework for how WSB2 associates with anti-apoptotic BCL-2 family members and promotes BIM turnover. The definition of a BCL-XL/MCL-1 co-receptor mechanism for WSB2-mediated BIM degradation is therefore both intuitive and mechanistically appealing. In parallel, the authors present a distinct experimental series showing that neuroblastoma cells exhibit pronounced sensitivity to WSB2 loss, undergo apoptosis upon its depletion and display reduced competitiveness in mixed-culture assays. Although the mechanistic connection between these observations requires further clarification, the convergence of a well-defined biochemical model with a clear cancer-relevant phenotype enhances the potential biological significance of WSB2 and raises the possibility that its regulation may hold therapeutic relevance.
Weaknesses
There are several limitations that readers should consider when interpreting the study. The most fundamental issue is the disconnect between the mechanistic model established in RPE1 cells and the apoptotic phenotype observed in neuroblastoma. Although the manuscript convincingly demonstrates the WSB2-BCL-XL/MCL-1-BIM axis in RPE1 cells and independently shows that WSB2 loss compromises neuroblastoma viability, it does not examine whether BIM levels are elevated upon WSB2 depletion in neuroblastoma, nor whether apoptosis in these cells requires BIM. Without demonstrating WSB2-BCL-2-BIM complex formation or BIM dependence in the disease-relevant context, it remains unclear whether the co-receptor mechanism characterised in RPE1 cells explains the phenotype. This gap is compounded by the observation that PUMA, another potent pro-apoptotic factor, also increases following WSB2 loss, raising the possibility that multiple death pathways contribute to the outcome. The absence of a genetic rescue experiment, such as re-expression of an shRNA-resistant WSB2 restoring viability and suppressing apoptosis, further limits causal inference regarding WSB2's role in neuroblastoma.
Many central claims rely on single Western blots and pulldown assays without quantification or assessment of reproducibility. This complicates the interpretation of CHX chase experiments (where initial steady-state levels differ between samples) and limits confidence in BH3 mimetic experiments, which use a single concentration and short exposure time. Without dose-response curves, time-course analyses, caspase inhibition, or orthogonal genetic perturbation of BCL-XL or MCL-1, indirect or off-target drug effects cannot be excluded. Reduced co-IP signals in these assays could therefore reflect early apoptotic events or compound instability rather than specific disruption of protein-protein interactions.
A further limitation concerns the inference of a direct WSB2-BCL-XL interaction. The mutagenesis analyses are performed in lysates that contain endogenous or overexpressed BIM, and BH3 mimetics disrupt the WSB2 interaction only when the BCL-XL-BIM heterodimer is dismantled. The study thus cannot distinguish whether the mapped WSB2 motifs mediate direct contact with BCL-XL or whether they influence the architecture or stability of the BCL-XL-BIM complex. Because no purified protein reconstitution or biophysical binding assays are presented, the evidence for direct binding remains suggestive rather than conclusive.
The ubiquitination data also remain incomplete. Although the WSB2 mutation reduces the ubiquitin smear on BIM, the assay does not demonstrate dependence on CUL5, RBX2 or ARIH2, leaving open which ligase components are directly responsible. MLN4924 implicates CRLs more broadly, but the ubiquitination assay itself does not assign activity to the CUL5-WSB2 module.
Finally, several methodological details are insufficiently described, including the generation and validation of the doxycycline-inducible WSB2 and HA-WSB2 lines and the suitability of the WSB2-overexpressing control line used in immunoprecipitations.
Collectively, these issues do not undermine the conceptual interest of the proposed co-receptor model, but they do limit the strength of the mechanistic claims and weaken the connection between the defined mechanism and the neuroblastoma phenotype.