Continuous developmental changes in word recognition support language learning across early childhood

  1. Department of Psychology, Stanford University, Stanford, United States
  2. Stanford University, Stanford, United States
  3. University of Wisconsin, Madison, Madison, United States
  4. University of California, Berkeley, Berkeley, United States
  5. Ludwig Maximilian University, Munich, Germany
  6. University of California, San Diego, San Diego, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Clare Press
    University College London, London, United Kingdom
  • Senior Editor
    Yanchao Bi
    Peking University, Beijing, China

Reviewer #1 (Public review):

Summary:

The study examined the extent to which children's word recognition skill improves across early development, becoming faster, more accurate and less variable, and the extent to which word recognition skill is related to children's concurrent and later vocabulary knowledge.

Strengths:

The main strength of the study comes from the dataset, which recycles previously collected data from 24 studies to examine the development of word recognition skill using data from 1963 children. This maximizes the impact of previously collected data while also allowing the study to reliably ask big-picture questions on the development of word recognition skill and its relation to chronological age and vocabulary knowledge. Data analysis is rigorous, thought through and very clearly described. Data and code necessary to reproduce the manuscript are shared on the project's GitHub.

Weaknesses:

The limitations of the study are acknowledged to some extent, but need to be improved and ensured that they run throughout the manuscript. Thus, in the discussion, the authors note that the approach is observational and exploratory, and highlight for me a key alternative explanation of the findings, namely that faster children could be faster due to their larger vocabulary, rather than faster children learning more words. Indeed, the latter explanation for the relationship is called into question, given that growth in speed was not related to growth in vocabulary. Here, the authors note that the null result may be related to the fact that they do not sufficiently precise estimates of growth slopes, rather than taking the alternative explanation seriously that there may not be as causal a link between being a faster word learner and a better word learner (learn more words). This is especially since, but correct me if I'm wrong here, the current vocabulary size is not taken into consideration in the model examining vocabulary growth. Given the increasing number of studies showing that current vocabulary knowledge predicts vocabulary growth (Laing, Kalinowski et al, Siew & Vitevitch), one simple alternative explanation is that current vocabulary knowledge predicts both current word recognition skill and later vocabulary knowledge. Is there anything in the data speaking against this hypothesis?

Equally, while the SEM examines vocabulary growth controlling for age, I wonder about the other way around. What would happen to the effect of age on word recognition skill (in the LME model, S8) if one were to add concurrent vocabulary size? So does chronological age explain word recognition skill or vocabulary knowledge? Right now, the manuscript describes this effect purely related to chronological age, but is it age per se or other cognitive abilities, including a key change across development, namely, vocabulary size? Thus, the presentation of the skill learning hypothesis suggests that age is a proxy for experience, while you actually have here a very nice proxy for experience in terms of children's vocabulary size.

Critically, while the discussion is more nuanced, the way the abstract is concluded and the way the Introduction is phrased suggest that the study is able to answer a causal question, which, as the authors themselves note, is not possible. The abstract, for instance, states that word recognition becomes faster, more accurate and less variable...consistent with a process of skill learning. And also that this skill plays a role in supporting early language learning, which is very causal language. I don't think you can really claim that you are testing the two hypotheses you suggest here. The work is definitely embedded in the context of these hypotheses, but are you really able to test them? My worry is that while the discussion is more nuanced, the extent to which this study will then be cited down the line as showing that children learn more words down the line because they are faster at recognizing words, and anything that you can do to tamper with such interpretations would be good for the literature. For me, this should not just be relegated to the discussion but should be touched upon in the abstract and Introduction.

Finally, it would help to talk more about the mechanisms at work in any relationship between word recognition and language learning. It seems to me that this would rely on some predictive processing framework, given the description on page 4, and it would be good to make this clear (faster and more accurately you can recognize a ball, better use this evidence to infer the speaker's intended meaning). Equally, when referring to word recognition, it would be good to clarify what this refers to - how well a child knows what a word refers to (and in the context of LWL, what it does not refer to) or how quickly it directs attention to what is referred to.

With regards to the data, I wonder if there is a clustering of kids past 24 months that is happening here, looking at Figures 1 and 2, where it seems like there is less change past the 24-month point. Is there any way to look at whether the effect of age or vocabulary on word recognition is not linear but asymptotic?

Reviewer #2 (Public review):

Summary:

This paper presents a series of analyses of a large dataset combining many prior studies of early word recognition (Peekbank). The analyses demonstrate that the speed, accuracy and consistency of word learning improve with age. Moreover, the speed of word learning early in development was related to vocabulary growth over time.

Strengths:

A key strength of the paper is the use of a large multi-study dataset. This is particularly valuable in the field of early cognitive development, which has (due to practical limitations) often been based on small-scale studies that necessarily provide a shaky foundation for conclusions. The analyses are also well-motivated.

Weaknesses:

The weaknesses I saw are primarily in some aspects of the conceptual motivation for the research.

First, I wasn't entirely clear about what the authors meant by "word recognition ability". For much of the manuscript (including the use of the term "word recognition ability" itself), this comes across as an intrinsic ability or skill that improves with development. Alternatively, the speed and accuracy metrics taken from studies in Peekbank might capture children's increasing knowledge of the common, concrete words typically used in these studies. To me, this is a somewhat different construct from a general skill at recognizing words. It would be helpful if the authors could clarify which construct they intend to capture, or if it is not possible to distinguish between these constructs from the Peekbank data.

Second, and relatedly, if the source of the age-related improvements is increasing experience with the common concrete words used in the Peekbank studies, then one might expect word recognition and improvements with age to be related to word frequency, given that more frequent words are experienced more often. Word frequency predicts word knowledge when assessed using CDI data. Can effects of frequency be detected in Peekbank word recognition metrics? If not, why? Similarly, is the speed and accuracy of word recognition in Peekbank data related to CDI-derived word age of acquisition, and again, if not, why?

Finally, there is a bit of a risk of the main findings of this paper coming across as a foregone conclusion. I.e., how could it be otherwise that word recognition improves with development?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation