Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJean-Jacques Orban de XivryKU Leuven, Leuven, Belgium
- Senior EditorYanchao BiPeking University, Beijing, China
Reviewer #1 (Public review):
Summary:
The authors present a novel investigation of the movement vigor of individuals completing a synchronous extension-flexion task. Participants were placed into groups of two (so-called "dyads") and asked to complete shared movements (connected via a virtual loaded spring) to targets placed at varying amplitudes. The authors attempted to quantify what, if any, adjustments in movement vigor individual participants made during the dyadic movements, given the combined or co-dependent nature of the task. This is a novel, timely question of interest within the broader field of human sensorimotor control.
Participants from each dyad were labeled as "slow" (low vigor) or "fast" (high vigor), and their respective contributions to the combined movement metrics were assessed. The authors presented four candidate models for dyad interactions: (a) independent motor plans (i.e., co-activity hypothesis), (b) individual-led motor plans (i.e., leader-follower hypothesis), (c) generalization to a weighted average motor plan (i.e., weighted adaptation hypothesis), and (d) an uncertainty-based model of dynamic partner-partner interaction (i.e., interactive adaptation hypothesis). The final model allowed for dynamic changes in individual motor plans (and therefore, movement vigor) based on partner-partner interactions and observations. After detailed observations of interaction torque and movement duration (or vigor), the authors concluded that the interactive adaptation model provided the best explanation of human-human interaction during self-paced dyadic movements.
Strengths:
The experimental setup (simultaneous wrist extension-flexion movements) has been thoroughly vetted. The task was designed particularly well, with adequate block pseudo-randomization to ensure general validity of the results. The analyses of torque interaction, movement kinematics, and vigor are sound, as are the statistical measures used to assess significance. The authors structured the work via a helpful comparison of several candidate models of human-human interaction dynamics, and how well said models explained variance in the vigor of solo and combined movements. The research question is timely and extends current neuroscientific understanding of sensorimotor control, particularly in social contexts.
Weaknesses:
(1) My chief concern about the study as it currently stands is the relatively low number of data points (n=10). The authors recruited 20 participants, but the primary conclusions are based on dyad-specific interactions (i.e., analyses of "fast" vs "slow" participants in each pair). Some of these analyses would benefit greatly, in terms of power, from the addition of more data points.
1a) The distribution of delta-vigor (Fast group vs Slow group) is highly skewed (see Figures 3D, S6D), with over half of the dyads exhibiting delta-vigor less than 0.2 (i.e., less than 20% of unit vigor). Given the relatively low number of dyads, it would be helpful for the authors to provide explicit listings of VigorFast, VigorSlow, and VigorCombined for each of the 10 separate dyads or pairings.
1b) The authors concluded that the interactive adaptation hypothesis provided the best summary of the combined movement dynamics in the study. If this is indeed the case, then the relative degree of difference in vigor between the fast and slow participants in a dyad should matter. How well did the interactive adaptation model explain variance in the dyads with relatively low delta-vigor (e.g., less than 0.2) vs relatively high delta-vigor?
(2) The authors shared the results of one analysis of reaction time, showing that the reaction times of the slow partners and the fast partners did not differ during the initial passive block. Did the authors observe any changes in RT of either the slow or fast partner during the combined (primary task) blocks (KL, KH, etc.)? If the pairs of participants did indeed employ a form of interactive adaptation, then it is certainly plausible that this interaction would manifest in the initial movement planning phase (i.e., RT) in addition to the vigor and smoothness of the movements themselves.
Reviewer #2 (Public review):
Summary:
This study examines how individual movement vigor is integrated into a shared, dyadic vigor when two individuals are physically coupled. Participants performed wrist-reaching movements toward targets at different distances while mechanically linked via a virtual elastic band, and dyads were formed by pairing participants with different baseline vigor profiles. Under interaction conditions, movements converged to coordinated patterns that could not be explained by simple averaging, indicating that each dyad behaved as a single functional unit. Notably, under coupling, movement durations for both partners were shorter than in the solo condition, arguing against the view that each individual simply executed an independent movement plan. Furthermore, dyadic vigor was primarily predicted by the slower partner's vigor rather than by the faster partner's, suggesting that neither a leader-follower strategy nor a weighted averaging account fully explains the observed behavior. The authors propose a computational model in which both partners adapt to the emerging interaction dynamics ("interactive adaptation strategy"), providing a coherent explanation of the behavioral observations.
Strengths:
The study is carefully designed and addresses an important question about how individual movement vigor is integrated during joint action. The experimental paradigm allows systematic manipulation of interaction strength and partner asymmetry. The behavioral results show clear and robust patterns, particularly the shortening of movement durations under elastic coupling (KL and KH conditions) and the asymmetrical contribution of the slower partner's vigor to dyadic vigor. The computational model captures the main behavioral patterns well and provides a principled framework for interpreting dyadic vigor not as a simple combination of two independent motor plans, but as an emergent property arising from mutual adaptation. Conceptually, the study is notable in extending the notion of vigor from an individual attribute to a dyad-level construct, opening a new perspective on coordinated movement and motor decision-making.
Weaknesses:
A key conceptual issue concerns the apparent asymmetry between partners in the computational framework. While dyadic vigor is empirically better predicted by the slower partner's vigor, the model formulation appears to emphasize the faster partner's time-related cost and interaction forces. Although the cost function includes an uncertainty-related component associated with the slower partner, it remains unclear from the current formulation and description how dyadic vigor is formally derived from the slower partner's control policy within the same modeling framework. This raises an important question regarding whether the model offers a symmetric account of dyadic vigor formation for both partners or whether it is effectively anchored to the faster partner's control architecture.
A second conceptual issue concerns the interpretation of the term "motor plan." It remains unclear whether this term refers primarily to movement-related characteristics such as speed or duration, or more broadly to the underlying optimization structure that governs these variables. This distinction is theoretically important, as it determines whether the reported interaction effects should be understood as adjustments in movement characteristics or as changes in the structure of the control policy itself.
Reviewer #3 (Public review):
Summary:
This study provides novel insights into how individuals regulate the speed of their movements both alone and in pairs, highlighting consistent differences in movement vigor across people and showing that these differences can adapt in dyadic contexts. The findings are significant because they reveal stable individual patterns of action that are flexible when interacting with others, and they suggest that multiple factors, beyond reward sensitivity, may contribute to these idiosyncrasies. The evidence is generally strong, supported by careful behavioral measurements and appropriate modeling, though clarifying some statistical choices and including additional measures of accuracy and smoothness would further strengthen the support for the conclusions.
Major Comments:
(1) Given the idiosyncrasies in individual vigor, would linear mixed models (LMMs) be more appropriate than ANOVAs in some analyses (e.g., in the section "Solo session"), as they can account for random intercepts and slopes on vigor measures? Some figures (e.g., Figure 2.B and 3.E) indeed seem to show that some aspects of behaviour may present variability in slopes and intercepts across participants. In fact, I now realize that LMMs are used in the "Emergence of dyadic vigor from the partners' individual vigor" section, so could the authors clarify why different statistical approaches were applied depending on the sections?
(2) If I understand correctly, the introduction suggests that idiosyncrasies in movement vigor may be driven by inter-individual differences in reward sensitivity. However, the current task does not involve any explicit rewards, yet the authors still observe idiosyncrasies in vigor, which is interesting. Could this indicate that other factors contribute to these consistent individual differences? For example, could sensitivity to temporal costs or physical effort explain the slow versus fast subgrouping? Specifically, might individuals more sensitive to temporal costs move faster to minimize opportunity costs, and might those less sensitive to effort costs also move faster? Along the same lines, could the two subgroups (slow vs. fast) be characterized in terms of underlying computational "phenotypes," such as their sensitivities to time and effort? If this is not feasible with the current dataset, it would still be valuable to discuss whether these factors could plausibly account for the observed patterns, based on existing literature.
(3) The observation that dyads did not lose accuracy or smoothness despite changes in vigor is interesting and suggests a shift in the speed-accuracy tradeoff. Could the authors include accuracy and smoothness measures in the main figures rather than only in supplementary materials? I think it would make the manuscript more complete.
(4) It is a bit unclear to me whether the variance assumptions for ANOVAs were checked, for instance, in Figure 3H.