Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorChang LiuJohns Hopkins University, Baltimore, United States of America
- Senior EditorAmy AndreottiIowa State University, Ames, United States of America
Reviewer #1 (Public review):
Summary:
Since dimerization is essential for SARS-CoV-2 Mpro enzymatic activity, the authors investigated how different classes of inhibitors, including peptidomimetic inhibitors (PF-07321332, PF-00835231, GC376, boceprevir), non-peptidomimetic inhibitors (carmofur, ebselen, and its analog MR6-31-2), and allosteric inhibitors (AT7519 and pelitinib), influence the Mpro monomer-dimer equilibrium using native mass spectrometry. Further analyses with isotope labeling, HDX-MS, and MD simulations examined subunit exchange and conformational dynamics. Distinct inhibitory mechanisms were identified: peptidomimetic inhibitors stabilized dimerization and suppressed subunit exchange and structural flexibility, whereas ebselen covalently bound to a newly identified site at C300, disrupting dimerization and increasing conformational dynamics. This study provides detailed mechanistic evidence of how Mpro inhibitors modulate dimerization and structural dynamics. The newly identified covalently binding site C300 represents novelty as a druggable allosteric hotspot.
Strengths:
This manuscript investigates how different classes of inhibitors modulate SARS-CoV-2 main protease dimerization and structural dynamics, and identifies a newly observed covalent binding site for ebselen.
Weaknesses:
The major concern is the absence of mutagenesis data to support the proposed inhibitory mechanisms, particularly regarding the role of the inhibitor binding site.
Reviewer #2 (Public review):
Summary:
This is a mechanistic study that provides new insights into the inhibition of SARS-CoV-2 Mpro.
Strengths:
The identification of dimer interface stabilization/destabilization as distinct inhibitory mechanisms and the discovery of C300 as a potential allosteric site for ebselen are important contributions to the field. The experimental approach is modern, multi-faceted, and generally well-executed.
Weaknesses:
The primary weaknesses relate to linking the biophysical observations more directly to functional enzymatic outcomes and providing more quantitative rigor in some analyses. While the study is overall strong, addressing its weaknesses and limitations would elevate the impact and translational relevance of the current manuscript.
(1) Correlation with Functional Activity:
The most significant gap is the lack of direct enzymatic activity assays under the exact conditions used for MS and HDX. While EC50 values are listed from literature, demonstrating how the observed dimer stabilization (by peptidomimetics) or dimer disruption (by ebselen) directly correlates with inhibition of proteolytic activity in the same experimental setup would solidify the functional relevance of the biophysical observations. For instance, does the fraction of monomer measured by native MS quantitatively predict the loss of activity? Also, the single inhibitor concentration used in each MS experiment needs to be specified in the main text and legends. A discussion on whether the inhibitor concentrations required to observe these dimerization effects (in native MS) or structural dynamics (in HDX-MS) align with EC50 values would be helpful for contextualizing the findings.
(2) For the two Cys residues found to be targeted by ebselen, what are their respective modification stoichiometry related to the ebselen concentration? Especially for the covalent binding site C300, which is proposed in this study to represent a novel allosteric inhibition mechanism of ebselen, more direct experimental evidence is needed to support this major hypothesis. Does mutation or modification of C300 affect the Mpro dimerization/monomer equilibrium and alter the enzymatic activity? If ebselen acts as a covalent inhibitor linked to multiple Cys, why is its activity only in the uM range?
(3) For the allosteric inhibitor pelitinib with low-uM activity, no significant differences in deuterium uptake of Mpro were observed. In terms of the binding affinity, what is the difference between pelitinib and ebselen? Some explanations could be provided about the different HDX-MS results between the two non-peptidomimetic inhibitors with similar activities.
(4) Native MS Quantification:
The analysis of monomer-dimer ratios from native MS spectra appears qualitative or semi-quantitative. A more rigorous and quantified analysis of the percentage of dimer/monomer species under each condition, with statistical replicates, would strengthen the equilibrium shift claims. For native MS analysis of each inhibitor, the representative spectrum can be shown in the main figure together with quantified dimer/monomer fractions from replicates to show significance by statistical tests.
(5) Changes of HDX rates in certain regions seem very subtle. For example, as it states 'residues 296-304 in the C-terminal region of M pro were more flexible upon ebselen binding (Figure 4c)', the difference is barely observable. The percentage of HDX rate changes between two conditions (with p values) can be specified in the text for each fragment discussed, and any change below 5% or 10% is negligible.