Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorNoriaki OnoThe University of Texas Health Science Center at Houston, Houston, United States of America
- Senior EditorKathryn CheahUniversity of Hong Kong, Hong Kong, Hong Kong
Reviewer #1 (Public review):
Summary:
The authors aim to determine whether TENT5A, a post-transcriptional regulator previously implicated in bone formation, also plays a role in enamel development. Using a mouse model lacking TENT5A, they report hypomineralized enamel with structural defects, accompanied by reduced expression, altered poly(A) tail length, and impaired secretion of enamel matrix proteins, particularly amelogenin. By combining ultrastructural imaging, transcriptomics, direct RNA sequencing, and protein localization analyses, the study proposes that TENT5A promotes cytoplasmic polyadenylation and translation of a subset of extracellular matrix transcripts required for enamel biomineralization.
Strengths:
A major strength of this work is its conceptual novelty. To my knowledge, this is the first study to demonstrate that a non-canonical poly(A) polymerase plays a direct role in enamel development, extending post-transcriptional regulation by cytoplasmic polyadenylation from bone to enamel, a biologically distinct and non-regenerative mineralized tissue. The identification of amelogenin as a dominant, tissue-specific target provides a new perspective on how enamel matrix production is regulated beyond transcriptional control.
In addition, the study is supported by a comprehensive and complementary set of approaches linking molecular changes to tissue-level phenotypes. The use of direct RNA sequencing provides strong evidence for selective regulation of poly(A) tail length in specific transcripts rather than global effects on mRNA metabolism, and the phenotypic analyses convincingly connect altered post-transcriptional regulation to defects in enamel structure and mineralization.
Weaknesses:
Although the data support a role for TENT5A in stabilizing and promoting translation of amelogenin and related transcripts, the mechanism underlying substrate specificity remains unresolved. Poly(A) tail length alone does not explain why certain transcripts are regulated while others are not, and the proposed involvement of protein partners or RNA processing steps remains speculative. This limitation should be more clearly framed as an open question rather than an emerging mechanism.
A further limitation is the lack of direct human genetic or clinical evidence linking TENT5A to enamel defects. In humans, loss-of-function variants in TENT5A are known to cause a recessive form of osteogenesis imperfecta, but TENT5A has not been associated with amelogenesis imperfecta or other enamel phenotypes. This limits immediate translational interpretation of the mouse enamel phenotype and highlights the need for future human genetic or clinical studies.
Finally, the manuscript does not address whether other members of the TENT5 family are expressed in ameloblasts or could compensate for the loss of TENT5A, leaving open questions about redundancy and specificity within this family.
Reviewer #2 (Public review):
Summary:
The manuscript by Aranaz-Novaliches describes a study of Tent5a knockout (KO) mice. The authors demonstrate a severe enamel phenotype in these mice, characterized by hypoplastic enamel with markedly disturbed organization of enamel rods. Additionally, they report that Amelx expression is reduced in the mutant compared to wild type (WT) at both mRNA and protein levels. The authors also examine the distribution and co-localization of Amelx and Ambn in ameloblasts and the enamel matrix. These findings are novel and provide important insights into the role of polyadenylation in regulating enamel matrix protein translation and its downstream effects on protein trafficking, secretion, and enamel formation. However, I have multiple concerns regarding the data and its analysis that need to be addressed.
Specific comments:
(1) Introduction
The structure of the introduction is unconventional. The first sentence of the third paragraph states that the goal of this study is to investigate the role of TENT5A in enamel formation, but the rest of the paragraph focuses on enamel in general. The following paragraph claims that the authors discovered the effects of Tent5a deficiency on enamel formation for the first time, yet most of the paragraph discusses enamel proteins and amelogenesis. The choice of references is problematic. The authors cite Sire et al. (2007), which focuses on the origin and evolution of enamel mineralisation genes, a poor fit for this context. A more appropriate source would be a recent review, e.g., Lacruz R et al., Physiol Rev. 2017;97(3):939-993. Ambn constitutes ~5% of the enamel matrix, not 10%. Reference 16 (Martin) is not ideal for murine enamel; more detailed studies exist, e.g., Smith CE et al., J Anat. 2019;234(2):274-290. References on protein-protein interactions (17-19) are also off: Wald et al. studied Ambn-Ambn and Amelx-Amelx interactions separately; Fang et al. focused on Amelx self-assembly only; Kawasaki and Weiss addressed gene evolution. The authors should cite work from Moradian-Oldak's lab, which clearly demonstrates Amelx-Ambn interactions. The last paragraph contains confusing statements, e.g., "TENT5a localized in rER promotes the expression of AmelX and other secreted protein transcripts." Also, the manuscript does not convincingly show disruption of self-assembly beyond overall enamel disorganization.
(2) Results
(a) microCT
Quantitative microCT analyses of WT and KO enamel are needed. At a minimum, enamel thickness and density should be measured from at least three biological replicates per genotype. Severe malocclusion in KO mice is not discussed. The mandibular incisor appears abraded, while the maxillary incisor is overgrown. Is maxillary enamel as affected as mandibular? The age of the mice is not specified. High-resolution scans of isolated mandibular incisors described in Materials and Methods should be included.
(b) SEM
The term "disorganized crystal structure" is incorrect - SEM cannot reveal crystal structure. This requires electron/X-ray diffraction or vibrational spectroscopy. Likely, the authors meant disorganized rods and interrod enamel. The phrase "weak HAP composition" is unclear. Can the increase in interprismatic matrix volume and reduction in rod diameter be quantified? Since rods are secreted by distal Tomes' processes and interrod by proximal Tomes' processes, an imbalance may indicate alterations in the ameloblast secretory apparatus. TEM studies of demineralized incisors are recommended to assess ameloblast ultrastructure.
(c) EMP expression
There is a discrepancy between WB images and data in Figure S2a. In Figure 2b, Amelx band is stronger than Ambn (expected, as Amelx is ~20× more abundant), but in Figure S2a, Ambn appears higher. How was protein intensity in Fig. S2a calculated? Optical density? Was normalization applied? Co-localization in Figure 2d was performed on LS8 cells, which lack a true ameloblast phenotype. Amelx expression in LS8 cells is ~2% of actin (Sarkar et al., 2014), whereas in murine incisors, it is ~600× higher than actin (Bui et al., 2023). Ambn signal is weaker than Amelx, which may affect co-localization results.
(d) Splicing products in Figure 2e
All isoforms except one contain exon 4. The major functional splice product of Amelx lacks exon 4 (Haruyama et al. J Oral Biosci. 2011;53(3):257-266), and there are some indications that the presence of exon 4 can lead to enamel defects. Can it be that the observed phenotype is due to the presence of exon 4?
(e) Co-localization studies
The presented co-localization studies do not demonstrate self-assembly defects; they reflect enamel microstructural defects observed by SEM. Self-assembly occurs at the nanoscale and cannot be assessed by light microscopy except with advanced optical methods. Conclusions based on single images are weak. The authors should perform experiments at least on three biological replicates per genotype, quantify results (e.g., total gray values per ROI of equal pixel size), and use co-localization metrics such as Mander's coefficient. Claims about alternative secretory pathways require much stronger evidence.
The authors should avoid implying that mRNA is inside the ER lumen. It is likely associated with the outer rER surface, which is expected. The resolution of the methods used is insufficient to confirm ER lumen localization.
Reviewer #3 (Public review):
Summary:
It is well established that poly(A) tails at the 3' end of mRNA are critical for mRNA stability, providing another layer of gene regulation. TENT5A is one of the non-canonical poly(A) polymerases that add an extra poly(A) tail. This manuscript demonstrates that the Tent5A mutation leads to mineralization abnormalities in the tooth, shorter poly(A) tails in amelogenin mRNA and some other selected mRNAs, and provides a list of TENT5A interacting proteins.
Strengths:
(1) The authors show in vivo genetic evidence that Tent5a is critical for normal tooth mineralization.
(2) The authors show that the length of the poly(A) tail in amelogenin (AmelX) is 13 bases shorter in Tent5a mutants but not in other mRNAs, such as ameloblastin (Ambn).
(3) Differentially expressed genes (DEGs) in Tent5A mutant tissues (cervical loop) are identified, and some of them show different lengths of poly(A) tails.
(4) TENT5A interacting proteins are identified. Together with the DEGs, these datasets will provide valuable research tools to the community.
Weaknesses:
(1) There is no direct evidence to support the main conclusion; the length of the poly(A) tail is critical for normal tooth mineralization.
(2) The RNAseq data to identify TENT5A substrate is based on the assumption that shorter poly(A) tailed RNA is less stable. However, there are multiple reasons for the differential expression of RNA in Tent5A mutant tissues.
(3) Several TENT5A-interacting proteins have been identified, but, beyond their colocalization with a target mRNA, no mechanistic studies have been conducted.