Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJoris DeelenMax Planck Institute for Biology of Ageing, Cologne, Germany
- Senior EditorEduardo FrancoMcGill University, Montreal, Canada
Reviewer #1 (Public Review):
Previous studies have linked several lifestyle-related factors, such as body mass index and smoking, alcohol use with accelerated biological aging measured using epigenetic clocks, however, most of them focused on single lifestyle factors based on cross-sectional data from older adults. The current study has a couple of major strengths: it has a decent sample size, lifestyle was measured longitudinally during puberty and adolescence, it looked at the effect of multiple lifestyle measures collectively, it looked at multiple epigenetic clocks, and due to the data from twins, it could examine the contribution of genetic and environmental influences to the outcomes. I have a couple of comments that are mainly aimed at improving the clarity of the methods (e.g. how was multiple testing correction done, how did the association model account for the clustering of twin data, how many samples were measured on 450k vs EPIC and were raw or pre-QC'd data supplied to the online epigenetic age calculator), and interpretation of findings (why were 2 measures of Dunedin PACE of aging used, how much are results driven by BMI versus the other lifestyle factors, and the discussion on shared genetic influences should be more nuanced; it includes both pleiotropic effects and causal effects among lifestyle and biological ageing).
Reviewer #2 (Public Review):
Kankaanpää and colleagues studied how lifestyle factors in adolescence (e.g., smoking, BMI, alcohol and exercise) associate with advanced epigenetic age in early adulthood.
Strengths:
The manuscript is very well written. Although the analyses and results are complex, the authors manage very well to convey the key messages.
The twin dataset is large and longitudinal, making this an excellent resource to assess the research questions.
The analyses are advanced including LCA capitalizing on the strength of these data.
The authors also include a wider range of epigenetic age measures (n=6) as well as a broader range of lifestyle habits. This provides a more comprehensive view that also acknowledges that associations were not uniform across all epigenetic age measures.
Weaknesses:
The accuracy of the epigenetic age predictions was moderate with quite large mean absolute errors (e.g., +7 years for Horvath and -9 years for PhenoAge). Also, no correlations with chronological age are presented. With these large errors it is difficult to tease apart meaningful deviations (between chronological and biological age) from prediction error.
The authors claim that 'the unhealthiest lifestyle class, in which smoking and alcohol use co-occurred, exhibited accelerated biological aging...'. However, this is only partially true. For example, PhenoAge was not accelerated in lifestyle class C5. Similarly, all classes showed some degree of deceleration (not acceleration) with respect to DunedinPACE (Figure 3D). The large degree of heterogeneity across different epigenetic age measures needs to be acknowledged.
The authors claim that 'Practically all variance of AAPheno and DunedinPACE common with adolescent lifestyle was explained by shared genetic factors'. However, Figure 4 suggest that most of the variation (up to 96%) remained unexplained and genetics only explained around 10-15% of total variation. The large amount of unexplained variation should be acknowledged.