Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
- Senior EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
Reviewer #1 (Public Review):
Medwig-Kinney et al perform the latest in a series of studies unraveling the genetic and physical mechanisms involved in the formation of C. elegans gonad. They have paid particular attention to how two different cell fates are specified, the ventral uterine (VU) or anchor cell (AC), and the behaviors of these two cell types. This cell fate choice is interesting because the anchor cell performs an invasive migration through a basement membrane. A process that is required for correct C. elegans gonad formation and that can act as a model for other invasive processes, such as malignant cancer progression. The authors have identified a range of genes that are involved in the AC/VC fate choice, and that imparts the AC cell with its ability to arrest the cell cycle and perform an invasive migration. Taking advantage of a range of genetic tools, the authors show that the transcription factor NHR-63 is strongly expressed in the AC cell. The authors also present evidence that NHR-63 is could function as a transcriptional repressor through interactions with a Groucho and also a TCF homolog, and they also suggest that these proteins are forming repressive condensates through phase separation.
The authors have produced an extensive dataset to support their two primary claims: that NHR-67 expression levels determine whether a cell is invasive or proliferative, and also that NHR-67 forms a repressive complex through interactions with other proteins. The authors should be commended for clearly and honestly conveying what is already known in this area of study with exhaustive references. But absent data unambiguously linking the formation and dissolution of NHR-67 condensates with the activation of downstream genes that NHR-67 is actively repressing, the novelty of these findings is limited.
Reviewer #2 (Public Review):
Medwig-Kinney et al. explore the role of the transcription factor NHR-67 in distinguishing between AC and VU cell identity in the C. elegans gonad. NHR-67 is expressed at high levels in AC cells where it induces G1 arrest, a requirement for the AC fate invasion program (Matus et al., 2015). NHR-67 is also present at low levels in the non-invasive VU cells and, in this new study, the authors suggest a role for this residual NHR-67 in maintaining VU cell fate. What this new role entails, however, is not clear. The model in Figure 7E shows NHR-67 switching from a transcriptional activator in ACs to a transcriptional repressor in VUs by virtue of recruiting translational repressors. In this model, NHR-67 actively suppresses AC differentiation in VU cells by binding to its normal targets and acting as a repressor rather than an activator. Elsewhere in the text, however, the authors suggest that NHR-67 is "post-translationally sequestered" (line 450) in nuclear condensates in VU cells. In that model, the low levels of NHR-67 in VU cells are not functional because inactivated by sequestration in condensates away from DNA. Neither model is fully supported by the data, which may explain why the authors seem to imply both possibilities. This uncertainty is confusing and prevents the paper from arriving at a compelling conclusion. What is the function, if any, of NHR-67 and so-called "repressive condensates" in VU cells?
Below we list problems with data interpretation and key missing experiments:
The authors report that NHR-67 forms "repressive condensates" (aka. puncta) in the nuclei of VU cells and imply that these condensates prevent VU cells from becoming ACs. Fig. 3A, however, shows an example of an AC that also assemble NHR-67 puncta (these are less obvious simply due to the higher levels of NHR-67 in ACs). The presence of NHR-67 puncta in the AC seems to directly contradict the author's assumption that the puncta repress the AC fate program. Similarly, Figure 5-figure supplement 1A shows that UNC-37 and LSY-22 also form puncta in ACs. The authors need to analyze both AC and VU cells to demonstrate that NHR-67 puncta only form in VUs, as implied by their model.
While a pool of NHR-67 localizes to "repressive condensates", it appears that a substantial portion of NHR-67 also exists diffusively in the nucleoplasm. This would appear to contradict a "sequestration model" since, for such a model to work, a majority of NHR-67 should be in puncta. What proportion of NHR-67 is in puncta? Is the concentration of NHR-67 in the nucleoplasm lower in VUs compared to ACs and does this depend on the puncta?
The authors do not report whether NHR-67, UNC-37, LSY-22, or POP-1 localization to puncta is interdependent, as implied in the model shown in Fig. 7.
The evidence that the "repressor condensates" suppress AC fate in VUs is presented in Fig. 4D where the authors deplete the presumed repressor LSY-22. First, the authors do not examine whether NHR-67 forms puncta under these conditions. Second, the authors rely on a single marker (cdh-3p::mCherry::moeABD) to score AC fate: this marker shows weak expression in cells flanking one bright cell (presumably the AC) which the authors interpret as a VU AC transformation. The authors, however, do not identify the cells that express the marker by lineage analyses and dismiss the possibility that the marker-positive cells could arise from the division of an AC-committed cell. Finally, the authors did not test whether marker expression was dependent on NHR-67, as predicted by the model shown in Fig. 7.
Interaction between NHR-67 and UNC-37 is shown using Y2H, but not verified in vivo. Furthermore, the functional significance of the NHR-67/UNC-37 interaction is not tested.
Throughout the manuscript, the authors do not use lineage analysis to confirm fate transformation as is the standard in the field. There are 4 multipotential gonadal cells with the potential to differentiate into VUs or ACs. Which ones contribute to the extra ACs in the different genetic backgrounds examined was not determined, which complicates interpretation. The authors should consider and test the following possibilities: disruption of NHR-67 regulation causes 1) extra pluripotent cells to directly become ACs early in development, 2) causes VU cells to gradually trans-fate to an AC-like fate after VU fate specification (as implied by the authors), or 3) causes an AC to undergo extra cell division(s)?? In Fig. 1F, 5 cells are designated as ACs, which is one more that the 4 precursors depicted in Fig. 1A, implying that some of the "ACs" were derived from progenitors that divided.
In conclusion, while the authors report on interesting observations, in particular the co-localization of NHR-67 with UNC-37/Groucho and POP-1 in nuclear puncta, the functional significance of these observations remains unclear. The authors have not demonstrated that the "repressive condensates" are functional and play a role in the suppression of AC fate in VU cells as claimed. The colocalization data suggest that NHR-67 interacts with repressors, but additional experiments are needed to demonstrate that these interactions are specific to VUs, impact VU fate, and sequester NHR-67 from its targets or transform NHR-67 into a transcriptional repressor.