Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
- Senior EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
Reviewer #1 (Public Review):
In their manuscript "Spindle assembly checkpoint-dependent mitotic delay is required for cell division in absence of centrosomes," Farrell and colleagues employ carefully chosen approaches to assay mitotic timeliness in the absence of centrosomes in mammalian culture cells, namely the mechanism behind it and its function. The authors acknowledge prior work well and present their data succinctly, clearly, and with a clear logical flow of experiments. The experiments are thoughtfully designed and presented, with appropriate controls in place.
The authors' model whereby centrosome separation and its early definition of poles mediates timely mitosis without relying on a SAC-dependent delay is compelling, and the authors' data are consistent with it. They show using two different MPS1 inhibitors that acentrosomal cell division fails, supporting their claims that a SAC-dependent delay is required in these instances. Furthermore, they show that reintroducing a time delay is sufficient to restore cell division, but inhibiting a different aspect of SAC function does not restore cell division. Next, the authors rule out polyploidy as a potential confounding factor for requiring a SAC-dependent delay, and instead demonstrate that inhibiting centrosome separation by Eg5 inhibition is sufficient to require this delay for mitotic progression. The authors' findings overall support their proposed model.
Probing what aspects of centrosomes protect against a requirement for SAC-dependent delays would strengthen the work and specifically the conclusion that centrosomes provide "two-ness". For example, the authors could examine division in a population of cells with only one centrosome. Seeing some restoration of mitotic progression in the absence of SAC-dependent delays would suggest that even one centrosome with uninhibited Eg5 is sufficient to negate SAC-dependent delays, and would limit models for what exactly centrosomes contribute. This would help disentangle the roles of actual centrosomes and their biochemical cues, Eg5-driven centrosome separation, and early definition of poles on mitotic progression in the absence of SAC-dependent delays. Making a high fraction of cells with one centrosome could be achieved by using centrinone for a shorter time.
Reviewer #2 (Public Review):
Centrosomes are an integral part of cell division in most animal cells. There are notable exceptions, however, such as oocytes and plants. In addition, some animal cells can be engineered to lack centrosomes yet they can still manage to complete mitosis. This paper uses a couple methods (PLK4 inhibition and deletion of SASS6) to remove centrosomes from an immortalized cell line. Indeed, a strength of the paper is that similar results are obtained using both protocols to generate acentrosomal cells. The authors find acentrosomal cells take longer to divide, mostly due to a longer metaphase. The paper is based on the finding that inhibition of MPS1 results in a failure to divide, and the hypothesis that a SAC - dependent delay is required for these acentrosomal cells to divide.
The finding that MPS1 inhibition results in a failure to division is interesting. This is investigated by analyzing cells where AurB, APC or Eg5 (to generate monastral spindles) have been inhibited. My concerns are that the results are not conclusive that the effect of MPS1 is on cell cycle regulation. There is not enough data to make a conclusion as to why inhibition of MPS1 results in cell division failure.
An example is how to interpret the effect of Aurora B inhibition, which does not block acentrosomal cell division. If Aurora B is required for SAC activity, it suggests this effect of MPS1 may be a function other than SAC. Given the complexity of the SAC, it would be informative to test other SAC components. Instead, the authors conclude that the mitotic delay caused by MPS is required for acentrosomal cell division. I don't think they have ruled out, or even addressed other functions of MPS1.
The authors find that when both the APC and MPS1 are inhibited, the cells eventually divide. These results are intriguing, but hard to interpret. The authors suggest that the failure to divide in MPS1-inhibited cells is because they enter anaphase, and then must back out. This is hard to understand and there is not data supporting some kind of aborted anaphase. Is the division observed with double inhibition some sort of bypass of the block caused by MPS1 inhibition alone? It is not clear why inhibition of APC causes increased cell division when MPS1 is inhibited.
The authors characterize MTOC formation in these cells, which is also interesting. MTOCs are established after NEB in acentrosomal cells. Indeed, forming these MTOCs is probably a key mechanism for how these cells complete a division, like mouse oocytes.
Following this, the results with inhibiting Eg5 are interesting. The double inhibition of MPS1 and Eg5 results in division failure, like MPS1 inhibition in acentrosomal cells. Thus, there is a cell division block when the centrioles fail to divide. This result raises the possibility that failure to make a bipolar spindle, or the presence of a monopolar spindle, is the problem. In the absence of a bipolar spindle, a SAC induced delay is required for spindle assembly. This is a possibility but there are multiple interpretations of these results. Primarily, these results do not show the MPS1 effect on acentrosomal cells is SAC related. That a SAC mediated delay is required for acentrosmomal spindle assembly is not the only conclusion.