Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMani RamaswamiTrinity College Dublin, Dublin, Ireland
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
The study by Oikawa and colleagues demonstrates for the first time that a descending inhibitory pathway for nociception exists in non-mammalian organisms, such as Drosophila. This descending inhibitory pathway is mediated by a Drosophila neuropeptide called Drosulfakinin (DSK), which is homologous to mammalian cholecystokinin (CCK). The study creates and uses several Drosophila mutants to convincingly show that DSK negatively regulates nociception. They then use several sophisticated transgenic manipulations to demonstrate that a descending inhibitory pathway for nociception exists in Drosophila.
Strengths:
This study creates the possibility of using Drosophila to study descending nociceptive systems.
CRISPR/Cas9 is used to generate mutants of dsk, CCKLR-17D1, and CCKLR-17D3. The authors then use these mutants to clearly show that DSK negatively regulates nociception.
Several GAL4s are used to clearly show that these effects are likely mediated by two sets of neurons in the brain, MP1 and Sv.
RNAi and rescue experiments further show that CCKLR-17D1, a DSK receptor, functions in Goro neurons to negatively regulate nociception.
Thermogenetic experiments nicely show that activation of DSK neurons attenuates the nociceptive response.
Weaknesses:
A minor weakness in the study is that it is unclear how DSK negatively regulates nociception. An earlier study at the Drosophila nmj shows that loss of DSK signaling impairs neurotransmission and synaptic growth. In the current study, loss of CCKLR-17D1 in Goro neurons seems to increase intracellular calcium levels in the presence of noxious heat. An interesting future study would be the examination of the underlying mechanisms for this increase in intracellular calcium.
Reviewer #2 (Public Review):
This is an exceptional study that provides conclusive evidence for the existence of a descending pathway from the brain that inhibits nociceptive behavioral outputs in larvae of Drosophila melanogaster. The authors identify molecular both molecular and neuronal/cellular components of this pathway. Converging lines of evidence and conclusive genetic experiments indicate that the neuropeptide, drosulfakinin (DSK), and its receptors (CCK1 and CCK2) function to inhibit nociception behaviors. Interestingly, the authors show that the relevant DSK neurons have cell bodies that are in the larval brain and that these neurons send projections into the thoracic ganglion and ventral nerve cord. Several lines of evidence support the hypothesis that fourth-order nociceptive neurons called Goro, are one relevant target for these outputs. RNAi knockdown of the CCK1 receptor in these cells sensitizes behavioral and physiological responses to noxious heat. Second, the axons of DSK neurons form physical contact with processes of Goro neurons as revealed by GRASP analysis. However, the authors' careful experiments indicate that the contacts between axons and Goro neurites might not be indicative of direct synapses and instead might operate through the bulk transmission of the peptidergic signals. The study raises many interesting questions for future study such as what behavioral contexts might depend on this pathway. Using the CAMPARI approach, the authors do not find that the DSK neurons are activated in response to nociceptive input but instead suggest that these cells may be tonically active in gating nociception. Future studies may find contexts in which the output of the DSK neurons is inhibited to facilitate nociception, or contexts in which the cells are more active to inhibit nociception.
Reviewer #3 (Public Review):
This study describes a descending circuit that can modulate pain perception in the drosophila larvae. While descending inhibition is a major component of mammalian pain perception, it is not known if a similar circuit design exists in fruit flies. Overall the authors use clean logic to establish a role for DSK and its receptor in regulating nociception. I have made a few suggestions that I believe would strengthen the manuscript as this is an important discovery.
Major comments:
It's not completely clear why the authors are staining animals with an FLRFa antibody. Can the authors stain WT and DSK KO animals with a DSK antibody? Also, can the authors show in supplemental what antigen the FLRFa antibody was raised against, and what part of that peptide sequence is retained in the DSK sequence? This overall seems like a weakness in the study that could be improved on in some way by using DSK-specific tools.
What is the phenotype of DSK-Gal4 x UAS-TET animals? They should be hyper-reactive. If it's lethal maybe try an inducible approach.
Figure 9. This was not totally clear, but I think the authors were evaluating spontaneous (i.e. TRPA1-driven) rolling at 35C. The critical question is "does activating DSK-expressing neurons suppress acute heat nociception" and this hasn't really been addressed. The inclusion of PPK Gal4 + DSK Gal4 in the same animal kind of clouds the overall conclusions the reader can draw. The essential experiment is to express UAS-dTRPA1 in DSK-Gal4 or GORO-Gal4 cells, heat the animals to ~29C, and then test latency to a thermal heat probe (over a range of sub and noxious temperatures). Basically prove the model in Figure 10 showing ectopic activation or inhibition for each major step, then test heat probe responses.
It would also then be interesting to see how strong the descending inhibition circuit is in the context of UV burn. If this is a real descending circuit, it should presumably be able to override sensitization after injury.