Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis

  1. McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
  2. Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
  3. Department of Cell Biology and Physiology, Washington University in St. Louis, St Louis, United States
  4. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
  5. Department of Biomedical Engineering, Rowan University, Glassboro, United States
  6. Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
  7. BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Suk-Won Jin
    Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
  • Senior Editor
    Didier Stainier
    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

Reviewer #1 (Public review):

This manuscript puts forward the concept that there is a specific time window during which YAP/TAZ driven transcription provides feedback for optimal endothelial cell adhesion, cytoskeletal organization and migration. The study follows up on previous elegant findings from this group and others which established the importance of YAP/TAZ-mediated transcription for persistent endothelial cell migration. The data presented here extends the concept at two levels: first, the data may explain why there are differences between experimental setups where YAP/TAZ activity are inhibited for prolonged times (e.g. cultures of YAP knockdown cells), versus experiments in which the transient inhibition of YAP/TAZ and (global) transcription affects endothelial cell dynamics prior to their equilibrium.

All experiments are convincing, clearly visualized and quantified.

The strength of the paper is that it clearly indicates that there are temporal controlled feedback systems, which is important knowledge for understanding the mechanisms that drive endothelial collective cell behavior.

A potential limitation of the in vivo experiments is that the inhibitors may include off-target effects as well. To solve this caveat in future research endeavours, which is beyond the scope of the current study, it would be interesting to study this process in knockout models, combined with optogenetics and transgenic zebrafish lines that visualize endothelial cell functional properties such as proliferation and migration.

Reviewer #2 (Public review):

Summary:

Here the effect of overall transcription blockade, and then specifically depletion of YAP/TAZ transcription factors was tested on cytoskeletal responses, starting from a previous paper showing YAP/TAZ-mediated effects on the cytoskeleton and cell behaviors. Here, primary endothelial cells were assessed on substrates of different stiffness and parameters such as migration, cell spreading, and focal adhesion number/length were tested upon transcriptional manipulation. Zebrafish subjected to similar manipulations were also assessed during the phase of intersegmental vessel elongation. The conclusion was that there is a feedback loop of 4 hours that is important for the effects of mechanical changes to be translated into transcriptional changes that then permanently affect the cytoskeleton.

The idea is intriguing and a previous paper contains data supporting the overall model. The fish washout data is quite interesting and supports the kinetics conclusions. New transcriptional profiling in this version supports that cytoskeletal genes are differentially regulated with YAP/TAZ manipulations.

Major strengths:

The combination of in vitro and in vivo assessment provides evidence for timing in physiologically relevant contexts, and rigorous quantification of outputs is provided. The idea of defining temporal aspects of the system is quite interesting. New RNA profiling supports the model.

Weaknesses:

Actinomycin D blocks most transcription so exposure for hours likely leads to secondary and tertiary effects and perhaps effects on viability.

Comments on latest version:

I read the author response to previous reviews, and it seems they agree with the weaknesses stated in the reviews but did not provide any text or data revisions.

Reviewer #4 (Public review):

Summary:

Mason DE et al. have extended their previous study on continuous migration of cells regulated by a feedback loop that controls gene expression by YAP and TAZ. Time scale of the negative feedback loop is derived from the authors' adhesion-spreading-polarization-migration (ASPM) assay. Involvement of transcription-translation in the negative feedback loop is evidenced by the experiments using Actinomycin D. The time scale of mechanotransduction-dependent feedback demonstrated by cytoskeletal alteration in the actinomycin D-treated endothelial colony forming cells (ECFCs) and that shown in the ECFCs depleted of YAP/TAZ by siRNA. The authors examine the time scale when ECFCs are attached to MeHA matrics (soft, moderate, and stiff substrate) and show the conserved time scale among the conditions they use, although instantaneous migration, cell area, and circularity vary. Finally, they tried to confirm that the time scale of the feedback loop-dependent endothelial migration by the effect of washout of Actinomycin D (inhibition of gene transcription), Puromycin (translational inhibition), and Verteporfin (YAP/TAZ inhibitor) on ISV extension during sprouting angiogenesis. They conclude that endothelial motility required for vascular morphogenesis is regulated by a mechanotransduction-mediated feedback loop that is dependent on YAP/TAZ-dependent transcriptional regulation.

Strengths:

The authors conduct ASPM assay to find the time scale of feedback when ECFCs attach to three different matrics. They observe the common time scale of feedback. Thus, under very specific conditions they use, the reproducibility is validated by their ASPM assay. The feedback loop mediated by inhibition of gene expression by Actinomycin D is similar to that obtained from YAP/TAZ-depleted cells, suggesting the mechanotranduction might be involved in the feedback loop. The time scale representing infection point might be interesting when considering the continuous motility in cultured endothelial cells, although it might not account for the migration of endothelial cells that is controlled by a wide variety of extracellular cues. In vivo, stiffness of extracellular matrix is merely one of the cues.

Weaknesses:

ASPM assay is based on attachment-dependent phenomenon. The time scale, including the inflection point determined by ASPM experiments using cultured cells and the mechanotransduction-based theory, do not seem to fit in vivo ISV elongation. Although it is challenging to find the conserved theory of continuous cell motility of endothelial cells, the data is preliminary and does not support the authors' claim. There is no evidence that mechanotransduction solely determines the feedback loop during elongation of ISVs.

Comments on revisions:

The authors' methods using ASPM assay might suggest the feedback loop by their in vitro culture assay. They still need to confirm the loop in vivo using zebrafish intersegmental vessels. The time course of the feedback loop is supported by the ASPM assay. However, the feedback loop is not confirmed in vivo, although it might be suggested by the phenotypes of the ISV treated with drugs. Thus, in the abstract and in the results section, they had better rewrite the interpretation. They have not yet confirmed the feedback loop in vivo.

Author response:

The following is the authors’ response to the previous reviews

Reviewer #1 (Public review):

All experiments are convincing, clearly visualized and quantified.

The strength of the paper is that it clearly indicates that there are temporal controlled feedback systems which is important for endothelial collective cell behavior.

A limitation of the study is that the inhibitory studies in vivo may include off-target effects as well. Future endeavors, including specific knockout models, optogenetics and/or transgenic zebrafish lines that visualize endothelial cell properties (proliferation and migration) will be informative to track individual endothelial cell responses upon feedback signals.

We agree with the reviewer and are currently conducting experiments with optogenetic tools, knockout models, and transgenic zebrafish lines to dissect the feedback loop dynamics at the cellular scale.

Reviewer #2 (Public review):

Major strengths: The combination of in vitro and in vivo assessment provides evidence for timing in physiologically relevant contexts, and rigorous quantification of outputs is provided. The idea of defining temporal aspects of the system is quite interesting. New RNA profiling supports the model.

Weaknesses: Actinomycin D blocks most transcription so exposure for hours likely leads to secondary and tertiary effects and perhaps effects on viability.

We agree with the reviewer that “off-target” effects are a limitation of the pharmacologic approach. We have also previously shown that long-term treatment with actinomycin D reduces ECFC survival (Mason et al., 2019).

Reviewer #3 (Public review):

Strengths: The authors conduct ASPM assay to find the time scale of feedback when ECFCs attach to three different matrics. They observe the common time scale of feedback. Thus, under very specific conditions they use, the reproducibility is validated by their ASPM assay. The feedback loop mediated by inhibition of gene expression by Actinomycin D is similar to that obtained from YAP/TAZ-depleted cells, suggesting the mechanotranduction might be involved in the feedback loop. The time scale representing infection point might be interesting when considering the continuous motility in cultured endothelial cells, although it might not account for the migration of endothelial cells that is controlled by a wide variety of extracellular cues. In vivo, stiffness of extracellular matrix is merely one of the cues.

Weaknesses: ASPM assay is based on attachment-dependent phenomenon. The time scale including the inflection point determined by ASPM experiments using cultured cells and the mechanotransduction-based theory do not seem to fit in vivo ISV elongation. Although it is challenging to find the conserved theory of continuous cell motility of endothelial cells, the data is preliminary and does not support the authors' claim. There is no evidence that mechanotransduction solely determines the feedback loop during elongation of ISVs. The points to be addressed are listed in recommendations for the authors.

The ASPM assay enabled us to define temporal dynamics of YAP/TAZ mechanotransduction. We then used those insights to design ISV washout experiments that tested if the characteristic time scales were conserved in vivo. However, we agree with the limitations identified by the reviewer. Cells behave and respond to mechanical cues differently in 2D vs 3D environments, and the microenvironment in vivo is much more complex. Future work with optogenetic tools will be useful to dissect the temporal kinetics in vivo during ISV elongation.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation