Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public Review):
Overall, I find the work performed by the authors very interesting. However, the authors have not always included literature that seems relevant to their study. For instance, I do not understand why two papers Dunican et al 2013 and Dunican et al 2015, which provide important insight into Lsh/HELLS function in mouse, frog and fish were not cited. It is also important that the authors are specific about what is known and in particular about what is not known about CDCA7 function in DNA methylation regulation. Unless I am mistaken, there is currently only one study (Velasco et al 2018) investigating the effect of CDCA7 disruption on DNA methylation levels (in ICF3 patient lymphoblastoid cell lines) on a genome-wide scale (Illumina 450K arrays). Unoki et al 2019 report that CDCA7 and HELLS gene knockout in human HEK293T cells moderately and extremely reduces DNA methylation levels at pericentromeric satellite-2 and centromeric alpha-satellite repeats, respectively. No other loci were investigated, and it is therefore not known whether a CDCA7-associated maintenance methylation phenotype extends beyond (peri)centromeric satellites. Thijssen et al performed siRNA-mediated knockdown experiments in mouse embryonic fibroblasts (differentiated cells) and showed that lower levels of Zbtb24, Cdca7 and Hells protein correlate with reduced minor satellite repeat methylation, thereby implicating these factors in mouse minor satellite repeat DNA methylation maintenance. Furthermore, studies that demonstrate a HELLS-CDCA7 interaction are currently limited to Xenopus egg extract (Jenness et al 2018) and the human HEK293 cell line (Unoki et al 2019). Whether such an interaction exists in any other organism and is of relevance to DNA methylation mechanisms remains to be determined. Therefore, in my opinion, the conclusion that "Our co-evolution analysis suggests that DNA methylation-related functionalities of CDCA7 and HELLS are inherited from LECA" should be softened, as the evidence for this scenario is not very compelling and seems premature in the absence of molecular data from more species.
The authors used BLAST searches to characterize the evolutionary conservation of CDCA7 family proteins in vertebrates. From Figure 2A, it seems that they identify a LEDGF binding motif in CDCA7/JPO1. Is this correct and if yes, could you please elaborate and show this result? This is interesting and important to clarify because previous literature (Tesina et al 2015) reports a LEDGF binding motif only in CDCA7L/JPO2.
To provide evidence for a potential evolutionary co-selection of CDCA7, HELLS and the DNA methyltransferases (DNMTs) the authors performed CoPAP analysis. Throughout the manuscript, it is unclear to me what the authors mean when referring to "DNMT3". In the Material and Methods section, the authors mention that human DNMT3A was used in BLAST searches to identify proteins with DNA methyltransferase domains. Does this mean that "DNMT3" should be DNMT3A? And if yes, should "DNMT3" be corrected to "DNMT3A"? Is there a reason that "DNMT3A" was chosen for the BLAST searches?
CoPAP analysis revealed that CDCA7 and HELLS are dynamically lost in the Hymenoptera clade and either co-occurs with DNMT3 or DNMT1/UHRF1 loss, which seems important. Unfortunately, the authors do not provide sufficient information in their figures or supplementary data about what is already known regarding DNA methylation levels in the different Hymenoptera species to further consider a potential impact of this observation. What is "the DNA methylation status" of all these organisms? This information cannot be easily retrieved from Table S2. A clearer presentation of what is actually known already would improve this paragraph.
Furthermore, A. thaliana DDM1, and mouse and human Lsh/Hells are known to preferably promote DNA methylation at satellite repeats, transposable elements and repetitive regions of the genome. On the other hand, DNA methylation in insects and other invertebrates occurs in genic rather than intergenic regions and transposable elements (e.g. Bewick et al 2017; Werren JH PlosGenetics 2013). It would be helpful to elaborate on these differences.
Reviewer #2 (Public Review):
In this manuscript, Funabiki and colleagues investigated the co-evolution of DNA methylation and nucleosome remolding in eukaryotes. This study is motivated by several observations: (1) despite being ancestrally derived, many eukaryotes lost DNA methylation and/or DNA methyltransferases; (2) over many genomic loci, the establishment and maintenance of DNA methylation relies on a conserved nucleosome remodeling complex composed of CDCA7 and HELLS; (3) it remains unknown if/how this functional link influenced the evolution of DNA methylation. The authors hypothesize that if CDCA7-HELLS function was required for DNA methylation in the last eukaryote common ancestor, this should be accompanied by signatures of co-evolution during eukaryote radiation.
To test this hypothesis, they first set out to investigate the presence/absence of putative functional orthologs of CDCA7, HELLS and DNMTs across major eukaryotic clades. They succeed in identifying homologs of these genes in all clades spanning 180 species. To annotate putative functional orthologs, they use similarity over key functional domains and residues such as ICF related mutations for CDCA7 and SNF2 domains for HELLS. Using established eukaryote phylogenies, the authors conclude that the CDCA7-HELLS-DNMT axis arose in the last common ancestor to all eukaryotes. Importantly, they found recurrent loss events of CDCA7-HELLS-DNMT in at least 40 eukaryotic species, most of them lacking DNA methylation.
Having identified these factors, they successfully identify signatures of co-evolution between DNMTs, CDCA7 and HELLS using CoPAP analysis - a probabilistic model inferring the likelihood of interactions between genes given a set of presence/absence patterns. As a control, such interactions are not detected with other remodelers or chromatin modifying pathways also found across eukaryotes. Expanding on this analysis, the authors found that CDCA7 was more likely to be lost in species without DNA methylation.
In conclusion, the authors suggest that the CDCA7-HELLS-DNMT axis is ancestral in eukaryotes and raise the hypothesis that CDCA7 becomes quickly dispensable upon the loss of DNA methylation and/or that CDCA7 might be the first step toward the switch from DNA methylation-based genome regulation to other modes.
The data and analyses reported are significant and solid. However, using more refined phylogenetic approaches could have strengthened the orthologous relationships presented. Overall, this work is a conceptual advance in our understanding of the evolutionary coupling between nucleosome remolding and DNA methylation. It also provides a useful resource to study the early origins of DNA methylation related molecular process. Finally, it brings forward the interesting hypothesis that since eukaryotes are faced with the challenge of performing DNA methylation in the context of nucleosome packed DNA, loosing factors such as CDCA7-HELLS likely led to recurrent innovations in chromatin-based genome regulation.
Strengths:
- The hypothesis linking nucleosome remodeling and the evolution of DNA methylation.
- Deep mapping of DNA methylation related process in eukaryotes.
- Identification and evolutionary trajectories of novel homologs/orthologs of CDCA7.
- Identification of CDCA7-HELLS-DNMT co-evolution across eukaryotes.
Weaknesses:
- Orthology assignment based on protein similarity.
- No statistical support for the topologies of gene/proteins trees (figure S1, S3, S4, S6) which could have strengthened the hypothesis of shared ancestry.