Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorWei YanThe Lundquist Institute, Torrance, United States of America
- Senior EditorWei YanThe Lundquist Institute, Torrance, United States of America
Reviewer #1 (Public Review):
This study optimized a protocol for analyzing microplastics (MPs) in bovine and human follicular fluid. The authors identified the most common plastic polymers in the follicular fluid and assessed the impact of polystyrene beads on bovine oocyte maturation based on the concentration of MPs in follicular fluid. The authors found a decrease in maturation rate in the presence of polystyrene beads and conducted proteomic analysis of oocytes treated with and without MPs, revealing protein alterations.
Strengths:
• The optimization of the protocol for analyzing MPs in follicular fluid, which is important for future research in this area.
• Investigating the effects of MPs on oocyte maturation and proteomic profiles is significant.
Weaknesses:
• The effects of polystyrene beads on oocyte maturation and proteomic profiles are not directly demonstrated, and insufficient analysis is performed to support the claims made in the manuscript.
• The use of polystyrene beads does not fully mimic the concentration and interaction of MPs in follicular fluid, which warrants careful interpretation and discussion.
• A major weakness is the lack of mechanism. Determining the cause of meiotic arrest (decreased maturation rate) would be needed to strengthen the paper. Are spindle morphology, chromosome morphology/alignment and/or spindle assembly checkpoint mechanism perturbed in MPs-treated oocytes?
• Functional assays to validate one or more of the pathways suggested by the proteomic analysis would be necessary to strengthen the paper.
• The analysis of broken zona pellucida is not sufficiently convincing. Definitely the breakage of zona pellucida is most likely a result of oocyte denudation. However, this may indicate increased fragility of polystyrene beads-treated oocytes. Investigating cytoskeletal components in oocytes treated with or without polystyrene beads would strengthen this paper.
• The percentage of degenerated oocytes in control group is abnormally high which raises concern that the oocytes are not healthy.
• The small font size of the figures (such as Fig. 1C) affects the quality of the manuscript.
• Finally, the authors should cite previous publications on the effects of MPs on female reproduction, as this is not a novel area of research, despite the use of different concentrations. For example, "Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats (DOI: 10.1016/j.ecoenv.2021.112012)".
Reviewer #2 (Public Review):
This study presents valuable findings including the use of an improved method of Raman spectroscopy to measure accumulation of microplastics in ovarian follicular fluid obtained from cows and women and demonstration that experimental direct exposure of bovine eggs to biologically relevant levels of polystyrene, a microplastic found in both cows and women's follicular fluid, negatively influenced ova maturation status and the abundance of proteins involved in oxidative stress, DNA damage, apoptosis, and oocyte maturation. The evidence supporting the claims of the authors is solid but inclusion of human population from which the follicular fluid was obtained (e.g., demographics, reason for assisted reproduction), and details about quality control for proteome profiling experiments (i.e., peptide count cut-off for significant proteins) would have strengthened the study. The work will be of interest to exposure scientists, reproductive toxicologists, regulatory scientists, and reproductive health clinicians.
Reviewer #3 (Public Review):
The study from Grechi et al showed that emerging environmental microplastics (MPs) are present in both human and bovine follicular fluid. Moreover, based on the characterization and quantification data, authors treated bovine oocytes with environmentally relevant levels of polystyrene (PS) MPs and found that PS MPs interfered with oocyte maturation in vitro. This study is novel, particularly the first part of MP characterization and quantification, and for the first time confirms the presence of MPs in follicular fluid of humans and large farm animals. These results provide a possible mechanism by which the female infertility rate has been increasing in both humans and large farm animals. The session of exposing MPs to bovine and related oocyte health evaluation can be further improved. For example, authors examined the morphology of the oocyte zona pellucida (ZP) and degeneration and stained oocyte DNA to determine the meiotic maturation status. However, a much more comprehensive oocyte health evaluation can be performed including but not limited to the examination of oocyte spindle morphology, meiotic division, fertilization, early embryo development, mitochondria, and accumulation of ROS. These additional endpoints can provide more robust evidence to determine the impact of MPs on oocyte health. While the oocyte proteomic analysis identified altered proteins, more functional studies and causation experiments can be performed. In addition, authors exposed cumulus-oocyte-complexes (COCs) but not denuded oocytes with MPs, it is crucial to determine whether MPs accumulate in cumulus cells or oocytes or both as well as the compromised oocyte quality is caused by the direct effect of MPs or the indirect impact on somatic cumulus cells to cause a secondary effect on the oocytes.