Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public Review):
Masson et al. leveraged the natural genetic diversity presented in a large cohort of the Diversity Outbred in Australia (DOz) mice (n=215) to determine skeletal muscle proteins that were associated with insulin sensitivity. The hits were further filtered by pQTL analysis to construct a proteome fingerprint for insulin resistance. These proteins were then searched against Connectivity Map (CMAP) to identify compounds that could modulate insulin sensitivity. In parallel, many of these compounds were screened experimentally alongside other compounds in the Prestwick library to independently validate some of the compound hits. These two analyses were combined to score for compounds that would potentially reverse insulin resistance. Thiostrepton was identified as the top candidate, and its ability to reverse insulin resistance was validated using assays in L6 myotubes. The mechanism of action was also partially investigated. The concept of this work is certainly interesting, and the reviewer appreciates the amount of work the authors put into this study.
(1) What's the rationale of trypsinizing the tissue prior to mitochondrial isolation? This is not standard for subsequent proteomics analysis. This step will inevitably cause protein loss, especially for the post mitochondrial fractions (PMF). Treating samples with 0.01ug/uL trypsin for 37oC 30 min is sufficient to partially digest a substantial portion of the proteome. If samples from different subjects were not of the same weight, then this partial digestion step may introduce artificial variability as variable proportions of proteins from different subjects would be lost during this step. In addition, the mitochondrial protein enrichment in the mito fraction, despite statistically significant, does not look striking (Figure 1E, ~30% mitochondrial proteins in the mito fraction). As a comparison, Williams et al., MCP 2018 seem to have obtained high mitochondrial protein content in the mito fraction without trpsinizing the frozen quadriceps using a similar SWATH-MS-based approach.
(2) The authors mentioned that the proteomics data were Log2 transformed and median-normalized. Would it be possible to provide a bit more details on this? Were the subjects randomized?
(3) In Figure 1D, what were the numbers of mice the authors used for the CV comparisons in each group? Were they of similar age and sex? Were the differences in CV values statistically significant?
(4) The authors stated in lines 155-157 that proteins negatively associated with the Matsuda index were further filtered by presence of their cis-pQTLs. Perhaps more explanations would be needed to justify this filtering criterion? Having a cis-pQTL would mean the protein abundance variation is explained by the variation in its coding gene, this however conceptually would not be relevant to its association with the Matsuda index. With the data that the authors have in hand, would it not be natural to align the Matsuda index QTL with the pQTLs (cis and trans if available), and/or to perform mediation analysis to examine causal relationships with statistical significance?
(5) It seems a bit odd that the first half of the paper focused extensively on the authors' discoveries in the mitochondrial proteome, and how proteins involved in mitochondrial processes (such as complex I) were associated with Matsuda Index, but the final fingerprint list of insulin resistance, which contained 76 proteins, only had 7 mitochondrial proteins. Was this because many mitochondrial proteins were filtered out due to no cis-pQTL presenting?
(6) The authors found that thiostrepton-induced insulin resistance reversal effects were not through insulin signalling. It activated glycolysis but the mechanism of action was not clear. What are the proteins in the fingerprint list that led to identification of thiostrepton on CMAP? Is thiostrepton able to bind or change the expression of these proteins? Since thiostrepton was identified by searching the insulin resistance fingerprint protein list against CMAP, it would be rational to think that it exerts the biological effects by directly or indirectly acting on these protein targets.
Reviewer #2 (Public Review):
In the present study, Masson et al. provide an elegant and profound demonstration of utilization of systems genetics data to fuel discovery of actionable therapeutics. The strengths of the study are many: generation of a novel skeletal muscle genetics proteomic dataset which is paired with measures of glucose metabolism in mice, systematic utilization of these data to yield potential therapeutic molecules which target insulin resistance, cross-referencing library screens from connectivity map with an independent validation platform for muscle glucose uptake and preclinical data supporting a new mechanism for thiostrepton in alleviating muscle insulin resistance. Future studies evaluating similar integrations of omics data from genetic diversity with compound screens, as well as detailed characterization of mechanisms such as thiostrepton on muscle fibers will further inform some remaining questions. In general, the thorough nature of this study not only provides strong support for the conclusions made, but additionally offers a new framework for analysis of systems-based data. As a result, my questions/comments below are mostly derived from interest and curiosity.
Line 105: The observation that variance in respiratory proteins is stable while lipid pathways is variable is quite interesting. Is this due to lower overall levels of lipid metabolism enzymes (ex. do these differ substantially from similar pathways ranked from high-low abundance?).
Line 154: the 664 associations are impressive and potentially informative. It would be valuable to know which of these co-map to the same locus - either to distinguish linkage in a 2mb window or identify any cis-proteins which directly exert effects in trans-
Line 194: Cross-platform validation of the CMAP fingerprint results is an admirable set of validations. It might be good to know general parameters like how many compounds were shared/unique for each platform. Also the concordance between ranking scores for significant and shared compounds.
Line 319: Another consideration in the molecular fingerprint is how unique these are for muscle. While studies evaluating gene expression have shown that many cis-eQTLs are shred across tissues, to my knowledge, this hasn't been performed systematically for pQTLs. Therefore, consider adding a point to the discussion pointing out that some of the proteins might be conserved pQTLs whereas others which would be more relevant here present unique druggable targets in muscle.
Line 332: These are fascinating observations. 1, that in general insulin signaling and ampk were not themselves shown as top-ranked enrichments with matsuda and that this was sufficient to alter glucose metabolism without changes in these pathways. While further characterization of this signaling emchanism is beyond the scope of this study, it would be good to speculate as to additional signaling pathways that are relevant beyond ROS (ex. CNYP2 and others)
Line: 314: Remove the statement: "While this approach is less powerful than QTL co-localisation for identifying causal drivers,", as I don't believe that this has been demonstrated. Clearly, the authors provide a sufficient framework to pinpoint causality and produce an actionable set of proteins.
Line 346: I would highlight one more appeal of the approach adopted by the authors. Given that these compound libraries were prioritized from patterns of diverse genetics, these observations are inherently more-likely to operate robustly across target backgrounds.
Line 434: I might have missed but can't seem to find where the muscle data are available to researchers. Given the importance and novelty of these studies, it will be important to provide some way to access the proteomic data.