FKBP35 secures ribosome homeostasis in Plasmodium falciparum

  1. Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
  2. University of Basel, 4001 Basel, Switzerland
  3. School of Biological Sciences, Nanyang Technological University, Singapore
  4. Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
  5. Institute for Parasitology, VetSuisse and Medical Faculty, University of Zurich, Zurich, Switzerland

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Olivier Silvie
    Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
  • Senior Editor
    Dominique Soldati-Favre
    University of Geneva, Geneva, Switzerland

Reviewer #1 (Public Review):

In this study, the authors investigate the biological function of the FK506-binding protein FKBP35 in the malaria-causing parasite Plasmodium falciparum. Like its homologs in other organisms, PfFKBP35 harbors peptidyl-prolyl isomerase (PPIase) and chaperoning activities, and has been considered a promising drug target due to its high affinity to the macrolide compound FK506. However, PfFKBP35 has not been validated as a drug target using reverse genetics, and the link between PfFKBP35-interacting drugs and their antimalarial activity remains elusive. The manuscript is structured in two parts addressing the biological function of PfFKBP35 and the antimalarial activity of FK506, respectively.

The first part combines conditional genome editing, proteomics and transcriptomics analysis to investigate the effects of FKBP35 depletion in P. falciparum. The work is very well performed and clearly described. The data provide definitive evidence that FKBP35 is essential for P. falciparum blood stage growth. Conditional knockout of PfFKBP35 leads to a delayed death phenotype, associated with defects in ribosome maturation as detected by quantitative proteomics and stalling of protein synthesis in the parasite. The authors propose that FKBP35 regulates ribosome homeostasis but an alternative explanation could be that changes in the ribosome proteome are downstream consequences of the abrogation of FKBP35 essential activities as chaperone and/or PPIase. It is unclear whether FKBP35 has a specific function in P. falciparum as compared to other organisms. The knockdown of PfFKBP35 has no phenotypic consequence, showing that very low amounts of FKBP35 are sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays.

In the second part, the authors investigate the activity of FK506 on P. falciparum, and conclude that FK506 exerts its antimalarial effects independently of FKBP35. This conclusion is based on the observation that FK506 has the same activity on FKBP35 wild type and knock-out parasites, suggesting that FK506 activity is independent of FKBP35 levels, and on the fact that FK506 kills the parasite rapidly whereas inducible gene knockout results in delayed death phenotype. However, there are alternative explanations for these observations. As mentioned above, the delayed death phenotype could be due to delayed depletion of the protein upon induction of gene knockout. FK506 could have a similar activity on WT and mutant parasites when added before sufficient depletion of FKBP35 protein. In some experiments, the authors exposed KO parasites to FK506 later, presumably when the KO is effective, and obtained similar results. However, in these conditions, the death induced by the knockout could be a confounding factor when measuring the effects of the drug. Furthermore, the authors show that FK506 binds to FKBP35, and propose that the FK506-FKBP35 complex interferes with ribosome maturation, which would point towards a role of FKBP35 in FK506 action. In summary, the study does not provide sufficient evidence to rule out that FK506 exerts its effects via FKBP35.

Reviewer #2 (Public Review):

The manuscript by Thomen et al. FKBP secures ribosome homeostasis in Plasmodium falciparum and focuses on the importance of PfKBP35 protein, its interaction with the FK506 compound, and the role of PfKBP35 in ribosome biogenesis. The authors showed the interaction of the PfKBP54 with FK506, but the part of the FK506 and PfKBP54 in ribosome biogenesis based on the data is unclear.

The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. Both stories need additional experiments to make the manuscript(s) more complete. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims.

The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

Reviewer #3 (Public Review):

The study by Thommen et al. sought to identify the native role of the Plasmodium falciparum FKBP35 protein, which has been identified as a potential drug target due to the antiplasmodial activity of the immunosuppressant FK506. This compound has multiple binding proteins in many organisms; however, only one FKBP exists in P. falciparum (FKBP35). Using genetically-modified parasites and mass spectrometry-based cellular thermal shift assays (CETSA), the authors suggest that this protein is in involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is separate from its activity on the FKBP35 protein. The authors first created a conditional knockdown using the destruction domain/shield system, which demonstrated no change in asexual blood stage parasites. A conditional knockout was then generated using the DiCre system. FKBP35KO parasites survived the first generation but died in the second generation. The authors called this "a delayed death phenotype", although it was not secondary to drug treatment, so this may be a misnomer. This slow death was unrelated to apicoplast dysfunction, as demonstrated by lack of alterations in sensitivity to apicoplast inhibitors. Quantitative proteomics on the FKBP35KO vs FKBP35WT parasites demonstrated enrichment of proteins involved in pre-ribosome development and the nucleolus. Interestingly, the KO parasites were not more susceptible to cycloheximide, a translation inhibitor, in the first generation (G1), suggesting that mature ribosomes still exist at this point. The SunSET technique, which incorporates puromycin into nascent peptide chains, also showed that in G1 the FKBP35KO parasites were still able to synthesize proteins. But in the second generation (G2), there was a significant decrease in protein synthesis. Transcriptomics were also performed at multiple time points. The effects of knockout of FKBP35 were transcriptionally silent in G1, and the parasites then slowed their cell cycles as compared to the FKBP35WT parasites.

The authors next sought to evaluate whether killing by FK506 was dependent upon the inhibition of PfKBP35. Interestingly, both FKBP35KO and FKBP35WT parasites were equally susceptible to FK506. This suggested that the antiplasmodial activity of FK506 was related to activity targeting essential functions in the parasite separate from binding to FKBP35. To identify these potential targets, the authors used MS-CETSA on lysates to test for thermal stabilization of proteins after exposure to drug, which suggests drug-protein interactions. As expected, FK506 bound FKBP35 at low nM concentrations. However, given that the parasite IC50 of this compound is in the uM range, the authors searched for proteins stabilized at these concentrations as putative secondary targets. Using live cell MS-CETSA, FK506 bound FKBP35 at low nM concentrations; however, in these experiments over 50 ribosomal proteins were stabilized by the drug at higher concentrations. Of note, there was also an increase in soluble ribosomal factors in the absence of denaturing conditions. The authors suggested that the drug itself led to these smaller factors disengaging from a larger ribosomal complex, leading to an increase in soluble factors. Ultimately, the authors conclude that the native function of FKBP35 is involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is not related to the binding of FKBP35, but instead results from inhibition of essential functions of secondary targets.

Strengths:

This study has many strengths. It addresses an important gap in parasite biology and drug development, by addressing the native role of the potential antiplasmodial drug target FKBP35 and whether the compound FK506 works through inhibition of that putative target. The knockout data provide compelling evidence that the KBP35 protein is essential for asexual parasite growth after one growth cycle. Analysis of the FKBP35KO line also provides evidence that the effects of FK506 are likely not solely due to inhibition of that protein, but instead must have secondary targets whose function is essential. These data are important in the field of drug development as they may guide development away from structure-based FK506 analogs that bind more specifically to the FKBP35 protein.

Weaknesses:

There are also a few notable weaknesses in the evidence that call into question the conclusion in the article title that FKBP35 is definitely involved in ribosomal homeostasis. While the proteomics supports alterations in ribosome biogenesis factors, it is unclear whether this is a direct role of the loss of the FKBP35 protein or is more related to non-specific downstream effects of knocking down the protein. The CETSA data clearly demonstrate that FK506 binds PfKB35 at low nM concentrations, which is different than the IC50 noted in the parasite; however, the evidence that the proteins stabilized by uM concentrations of drug are actual targets is not completely convincing. Especially, given the high uM amounts of drug required to stabilize these proteins. This section of the manuscript would benefit from validation of a least one or two of the putative candidates noted in the text. In the live cell CETSA, it is noted that >50 ribosomal components are stabilized in drug treated but not lysate controls. Similarly, the authors suggest that the -soluble fraction of ribosomal components increases in drug-exposed parasites even at 37{degree sign}C and suggests that this is likely from smaller ribosomal proteins disengaging from larger ribosomal complexes. While the evidence is convincing that this protein may play a role in ribosome homeostasis in some capacity, it is not sure that the title of the paper "FKBP secures ribosome homeostasis" holds true given the lack of mechanistic data. A minor weakness, but one that should nonetheless be addressed, is the use of the term "delayed death phenotype" with regards to the knockout parasite killing. This term is most frequently used in a very specific setting of apicoplast drugs that inhibit apicoplast ribosomes, so the term is misleading. It is also possible that the parasites are able to go through a normal cycle because of the kinetics of the knockout and that the time needed for protein clearance in the parasite to a level that is lethal.

Overall, the authors set out to identify the native role of FKB35 in the P. falciparum parasites and to identify whether this is, in fact, the target of FK506. The data clearly demonstrate that FKBP35 is essential for parasite growth and provide evidence that alterations in its levels have proteomic but not transcriptional changes. However, the conclusion that FKBP35 actually stabilizes ribosomal complexes remains intermediate. The data are also very compelling that FK506 has secondary targets in the parasite aside from FKBP35; however, the high uM concentrations of the drug needed to attain results and the lack of biological validation of the CETSA hits makes it difficult to know whether any of these are actually the target of the compound or instead are nonspecific downstream consequences of treatment.

Author Response

eLife assessment

This important study addresses both the native role of the Plasmodium falciparum protein PfFKBP35 and whether this protein is the target of FK506, an immunosuppressant with antiplasmodial activity. The genetic evidence for the essentiality of FKBP35 in parasite growth is compelling. However, the conclusion that the role of FKBP35 is to secure ribosome homeostasis and the claim that FK506 exerts its antimalarial activity independently of FKBP35 rely on incomplete evidence.

We thank the Reviewers and Editors for their careful evaluation of our manuscript and the constructive criticism. We realized that some of our conclusions may be regarded/misunderstood as overstatements. This was by no means our intention and we apologize for the unnecessary inconvenience. The phenotype of FKBP35 knock-out parasites clearly centers on failing ribosomes and protein synthesis, which in our opinion, provides an important leap towards understanding the role of this drug target in P. falciparum biology. It is however correct that, at this point, we can only make evidence-based hypotheses about direct interaction partners and we will emphasize this more clearly in a revised version of the manuscript. In order to prevent misinterpretation of our work, and as detailed in the point-by-point responses to the reviewer comments, we propose changing the manuscript title to “Genetic validation of _Pf_FKBP35 as an antimalarial drug target”. To address the criticism regarding the effects of FK506, we will perform specific additional experiments. We are convinced that this new data set will resolve any remaining ambiguities and allows for a conclusive assessment of FK506 drug activity in P. falciparum.

Reviewer #1 (Public Review):

In this study, the authors investigate the biological function of the FK506-binding protein FKBP35 in the malaria-causing parasite Plasmodium falciparum. Like its homologs in other organisms, PfFKBP35 harbors peptidyl-prolyl isomerase (PPIase) and chaperoning activities, and has been considered a promising drug target due to its high affinity to the macrolide compound FK506. However, PfFKBP35 has not been validated as a drug target using reverse genetics, and the link between PfFKBP35-interacting drugs and their antimalarial activity remains elusive. The manuscript is structured in two parts addressing the biological function of PfFKBP35 and the antimalarial activity of FK506, respectively.

The first part combines conditional genome editing, proteomics and transcriptomics analysis to investigate the effects of FKBP35 depletion in P. falciparum. The work is very well performed and clearly described. The data provide definitive evidence that FKBP35 is essential for P. falciparum blood stage growth. Conditional knockout of PfFKBP35 leads to a delayed death phenotype, associated with defects in ribosome maturation as detected by quantitative proteomics and stalling of protein synthesis in the parasite. The authors propose that FKBP35 regulates ribosome homeostasis but an alternative explanation could be that changes in the ribosome proteome are downstream consequences of the abrogation of FKBP35 essential activities as chaperone and/or PPIase. It is unclear whether FKBP35 has a specific function in P. falciparum as compared to other organisms. The knockdown of PfFKBP35 has no phenotypic consequence, showing that very low amounts of FKBP35 are sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays.

We thank the Reviewer for the compliments regarding our experimental setup and the clarity of our manuscript. We agree that the link between FKBP35 knock-out and ribosome homeostasis is indirect and we now emphasize this more clearly in the revised manuscript. To prevent a general misinterpretation of our manuscript, we will adapt the title accordingly.

We would still like to reiterate that the phenotype of FKBP35 knock-out parasites is best described by their defects in maintaining functional ribosomes. It is for several reasons that we believe the links between FKBP35 and ribosome function are purely evidence driven: First, pre-ribosomal and nucleolar factors are the first proteins (in generation 1 schizonts) to be affected upon knock-out of fkbp35 (Figure 2A, Table S1). We realized that Figure 2A falls short in showing this observation, which is why will update the figure accordingly. Second, the dysregulation of ribosomal factors and the general stall in protein synthesis is dominating the phenotype of FKBP35 knock-out parasites in generation 2. We thus believe it is appropriate to say that knock-out cells are most likely killed in response to defective ribosome maintenance – which is a consequence of reduced FKBP35 levels. We are aware that our experiments (and possibly any other reverse genetics approach) cannot rule out that FKBP35 affects ribosomal factors indirectly. Clearly, more work is required to disentangle this question in more detail in the future.

We agree with the Reviewer that it is not possible to tell if the delayed death-like phenotype is due to a “delayed protein depletion”. We would however like to note that the DiCre/loxP approach allows for an immediate knock-out at the genome level and is thus as precise as possible. Further, in addition to the substantial depletion of FKBP35 in knock-out cells during the phenotypically silent generation, knocking out of fkbp35 at earlier time points (TPs 24-30 and 34-40 hpi in the preceding generation) resulted in the very same phenotype cycle (Figure 1). Here, parasite death was delayed substantially longer, i.e. more than one complete cycle. Together with the dysregulation of early ribosome maturation in generation 1, these findings point towards a delayed death phenotype. It is of course still possible to explain the delayed death-like phenotype by remnant activity of proteins synthetized prior to the genomic knock-out. We address this possibility and describe the two scenarios mentioned by the Reviewer in lines 141-144. Disentangling the two possibilities in future experiments will be difficult, not only with regards to FKBP35, but regarding “delayed death” phenotypes in general.

In the second part, the authors investigate the activity of FK506 on P. falciparum, and conclude that FK506 exerts its antimalarial effects independently of FKBP35. This conclusion is based on the observation that FK506 has the same activity on FKBP35 wild type and knock-out parasites, suggesting that FK506 activity is independent of FKBP35 levels, and on the fact that FK506 kills the parasite rapidly whereas inducible gene knockout results in delayed death phenotype. However, there are alternative explanations for these observations. As mentioned above, the delayed death phenotype could be due to delayed depletion of the protein upon induction of gene knockout. FK506 could have a similar activity on WT and mutant parasites when added before sufficient depletion of FKBP35 protein. In some experiments, the authors exposed KO parasites to FK506 later, presumably when the KO is effective, and obtained similar results. However, in these conditions, the death induced by the knockout could be a confounding factor when measuring the effects of the drug. Furthermore, the authors show that FK506 binds to FKBP35, and propose that the FK506-FKBP35 complex interferes with ribosome maturation, which would point towards a role of FKBP35 in FK506 action. In summary, the study does not provide sufficient evidence to rule out that FK506 exerts its effects via FKBP35.

Noteworthy, we were also very much surprised by data indicating that the antimalarial activity of FK506 is independent of FKBP35. It is for this reason that we conducted a comprehensive set of experiments to disprove our initial observations, but couldn`t find any evidence for an FKBP35-dependent mode of action of FK506:

We were not able to see altered FK506 sensitivity in (i) inducible knock-down parasites, (ii) inducible overexpression parasites and (iii) inducible knock-out parasites. Parasites with altered FKBP35 levels (as assessed by Western blot and quantitative proteomics at 36-42 hpi, respectively) were equally sensitive to FK506. Importantly, at no sub-lethal FK506 concentration did lower FKBP35 levels lead to an altered response of FKBP35KO compared to the wild-type control population. Furthermore, (iv) induction of the knock-out in the cycle preceding FK506 exposure also had no effect on parasite sensitivity. As mentioned by the Reviewer, we also exposed the parasites to FK506 at 30-36 hpi and (v) did not see any effect, even though we measured a 19-fold difference in FKBP35 protein levels between the parasite populations at 36-42 hpi. At this point, parasite death induced by the knock-out cannot be a confounding factor (as it was mentioned by the Reviewer), because the FKBP35 knock-out has no effect on parasite survival in generation 1 in the absence of FK506 (Figure 1F). This demonstrates that the observed effect is only due to drug-mediated killing and not due to the FKBP35 knock-out.

To account for a scenario in which the drop in FKBP35 levels only occurs after 36 hpi, we will perform an additional set of experiments, in which we induce the knock-out at 0-6 hpi and treat the parasites at 36-42 hpi (i.e. the time point at which the 19-fold difference in protein levels was measured by quantitative proteomics). This setup will allow determining whether or not the parasite killing activity of FK506 depends on FKBP35 levels.

So far, our experiments cannot support any scenario in which FK506 kills P. falciparum parasites via inhibiting the essential role of FKBP35 and we would therefore want to insist that this statement is based on highly solid evidence. In this context, it is important to note that our conclusion includes two scenarios: “This indicates that either the binding of FK506 does not interfere with the essential role of _Pf_FKBP35, or that _Pf_FKBP35 is inhibited only at high FK506 concentrations that also inhibit other essential factors.” While this phrase is already present in our initial submission, we will emphasize this point more clearly in the revised manuscript. We are convinced that this information is of high importance for ongoing and future drug development.

Reviewer #2 (Public Review):

The manuscript by Thomen et al. FKBP secures ribosome homeostasis in Plasmodium falciparum and focuses on the importance of PfKBP35 protein, its interaction with the FK506 compound, and the role of PfKBP35 in ribosome biogenesis. The authors showed the interaction of the PfKBP54 with FK506, but the part of the FK506 and PfKBP54 in ribosome biogenesis based on the data is unclear.

The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. Both stories need additional experiments to make the manuscript(s) more complete. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims.

The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

We thank the Reviewer for the evaluation of the manuscript. We apologize for the fact that the Reviewer found the manuscript to be inaccessible. We will use the comments as an incentive to restructure the manuscript and do our best to clarify the presentation, interpretation and conclusion of the presented data in the revised version. We believe that the FKBP35 data are strongly interlinked with the findings on FK506. We will emphasize these links more clearly and are convinced that the complementary nature of the datasets are a particular strength of the presented work.

Reviewer #3 (Public Review):

The study by Thommen et al. sought to identify the native role of the Plasmodium falciparum FKBP35 protein, which has been identified as a potential drug target due to the antiplasmodial activity of the immunosuppressant FK506. This compound has multiple binding proteins in many organisms; however, only one FKBP exists in P. falciparum (FKBP35). Using genetically-modified parasites and mass spectrometry-based cellular thermal shift assays (CETSA), the authors suggest that this protein is in involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is separate from its activity on the FKBP35 protein. The authors first created a conditional knockdown using the destruction domain/shield system, which demonstrated no change in asexual blood stage parasites. A conditional knockout was then generated using the DiCre system. FKBP35KO parasites survived the first generation but died in the second generation. The authors called this "a delayed death phenotype", although it was not secondary to drug treatment, so this may be a misnomer. This slow death was unrelated to apicoplast dysfunction, as demonstrated by lack of alterations in sensitivity to apicoplast inhibitors. Quantitative proteomics on the FKBP35KO vs FKBP35WT parasites demonstrated enrichment of proteins involved in pre-ribosome development and the nucleolus. Interestingly, the KO parasites were not more susceptible to cycloheximide, a translation inhibitor, in the first generation (G1), suggesting that mature ribosomes still exist at this point. The SunSET technique, which incorporates puromycin into nascent peptide chains, also showed that in G1 the FKBP35KO parasites were still able to synthesize proteins. But in the second generation (G2), there was a significant decrease in protein synthesis. Transcriptomics were also performed at multiple time points. The effects of knockout of FKBP35 were transcriptionally silent in G1, and the parasites then slowed their cell cycles as compared to the FKBP35WT parasites.

The authors next sought to evaluate whether killing by FK506 was dependent upon the inhibition of PfKBP35. Interestingly, both FKBP35KO and FKBP35WT parasites were equally susceptible to FK506. This suggested that the antiplasmodial activity of FK506 was related to activity targeting essential functions in the parasite separate from binding to FKBP35. To identify these potential targets, the authors used MS-CETSA on lysates to test for thermal stabilization of proteins after exposure to drug, which suggests drug-protein interactions. As expected, FK506 bound FKBP35 at low nM concentrations. However, given that the parasite IC50 of this compound is in the uM range, the authors searched for proteins stabilized at these concentrations as putative secondary targets. Using live cell MS-CETSA, FK506 bound FKBP35 at low nM concentrations; however, in these experiments over 50 ribosomal proteins were stabilized by the drug at higher concentrations. Of note, there was also an increase in soluble ribosomal factors in the absence of denaturing conditions. The authors suggested that the drug itself led to these smaller factors disengaging from a larger ribosomal complex, leading to an increase in soluble factors. Ultimately, the authors conclude that the native function of FKBP35 is involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is not related to the binding of FKBP35, but instead results from inhibition of essential functions of secondary targets.

Strengths:

This study has many strengths. It addresses an important gap in parasite biology and drug development, by addressing the native role of the potential antiplasmodial drug target FKBP35 and whether the compound FK506 works through inhibition of that putative target. The knockout data provide compelling evidence that the KBP35 protein is essential for asexual parasite growth after one growth cycle. Analysis of the FKBP35KO line also provides evidence that the effects of FK506 are likely not solely due to inhibition of that protein, but instead must have secondary targets whose function is essential. These data are important in the field of drug development as they may guide development away from structure-based FK506 analogs that bind more specifically to the FKBP35 protein.

Weaknesses:

There are also a few notable weaknesses in the evidence that call into question the conclusion in the article title that FKBP35 is definitely involved in ribosomal homeostasis. While the proteomics supports alterations in ribosome biogenesis factors, it is unclear whether this is a direct role of the loss of the FKBP35 protein or is more related to non-specific downstream effects of knocking down the protein. The CETSA data clearly demonstrate that FK506 binds PfKB35 at low nM concentrations, which is different than the IC50 noted in the parasite; however, the evidence that the proteins stabilized by uM concentrations of drug are actual targets is not completely convincing. Especially, given the high uM amounts of drug required to stabilize these proteins. This section of the manuscript would benefit from validation of a least one or two of the putative candidates noted in the text. In the live cell CETSA, it is noted that >50 ribosomal components are stabilized in drug treated but not lysate controls. Similarly, the authors suggest that the -soluble fraction of ribosomal components increases in drug-exposed parasites even at 37{degree sign}C and suggests that this is likely from smaller ribosomal proteins disengaging from larger ribosomal complexes. While the evidence is convincing that this protein may play a role in ribosome homeostasis in some capacity, it is not sure that the title of the paper "FKBP secures ribosome homeostasis" holds true given the lack of mechanistic data. A minor weakness, but one that should nonetheless be addressed, is the use of the term "delayed death phenotype" with regards to the knockout parasite killing. This term is most frequently used in a very specific setting of apicoplast drugs that inhibit apicoplast ribosomes, so the term is misleading. It is also possible that the parasites are able to go through a normal cycle because of the kinetics of the knockout and that the time needed for protein clearance in the parasite to a level that is lethal.

Overall, the authors set out to identify the native role of FKB35 in the P. falciparum parasites and to identify whether this is, in fact, the target of FK506. The data clearly demonstrate that FKBP35 is essential for parasite growth and provide evidence that alterations in its levels have proteomic but not transcriptional changes. However, the conclusion that FKBP35 actually stabilizes ribosomal complexes remains intermediate. The data are also very compelling that FK506 has secondary targets in the parasite aside from FKBP35; however, the high uM concentrations of the drug needed to attain results and the lack of biological validation of the CETSA hits makes it difficult to know whether any of these are actually the target of the compound or instead are nonspecific downstream consequences of treatment.

We appreciate the detailed and valuable suggestions to improve the manuscript. We agree that CETSA could only identify potential targets of FK506 in the micromolar range, while FK506 showed a high affinity for FKBP35, consistent with earlier reports (2). We would however like to point out that FK506 kills P. falciparum at exactly these relatively high concentrations and not at those presumed from the high affinity interactions between FK506 and FKBP35. The relatively high FK506 concentration required to stabilize potential off target proteins is therefore not a concerning observation, but rather corroborates our conclusion that FK506 fails to inhibit the essential function of FKBP35 at concentrations that leave off targets unaffected. As mentioned in response to Reviewer 1, we will describe and discuss these data more clearly in the revised manuscript.

We thank the Reviewer for pointing out the potential issues regarding the use of the term “delayed death phenotype”. We now refer to the FKBP35 phenotype as “delayed death-like” in the revised manuscript.

We believe that follow-up work on specific FK506 CETSA hits is out of scope of the current and already quite complex manuscript.

As mentioned in the response to Reviewer 1, we realize that the short title of the manuscript can be regarded as an overstatement. Again, this was clearly not our intention and we apologize that the Reviewers had to indicate this issue. While we believe that the message of the title holds true (see response to Reviewer 1), we recognize the misconception that might arise from it, which is why we propose the new title: “Genetic validation of _Pf_FKBP35 as an antimalarial drug target”.

  1. Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, et al. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol. 2019;17(7):e3000376.
  2. Kotaka M, Ye H, Alag R, Hu G, Bozdech Z, Preiser PR, et al. Crystal structure of the FK506 binding domain of Plasmodium falciparum FKBP35 in complex with FK506. Biochemistry. 2008;47(22):5951-61.
  3. Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, et al. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet. 2020;16(6):e1008865.
  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation