Energy Coupling and Stoichiometry of Zn2+/H+ Antiport by the Cation Diffusion Facilitator YiiP

  1. Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
  2. Dept. of Physics, Arizona State University, Tempe AZ

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Lucie Delemotte
    KTH Royal Institute of Technology, Stockholm, Sweden
  • Senior Editor
    Merritt Maduke
    Stanford University, Stanford, United States of America

Reviewer #1 (Public Review):

The manuscript by Hussein et al. uses cryoEM structure, microscale thermophoresis (MST), and molecular dynamics simulations (conventional and CpHMD) to unravel the Zn2+ and proton role in the function of the Cation Diffusion Facilitator YiiP. First, they generate mutants that abolish each of the three Zn2+ models to study the role of each of them separately, both structurally and functionally. Next, they used a Monte Carlo approach refining the CpHMD data with the MST points to establish the Zn2+ or proton binding state depending on the pH. That predicted a stoichiometry of one Zn2+ to 2 or 3 protons (1:3 under lower pH values). Finally, they proposed a mechanism that involves first the binding of Zn2+ to one low-affinity site and then, after the Zn2+ migrates to the highest affinity site in the transmembrane portion of the protein. The lack of Zn2+ in the low-affinity site might induce occlusion of the transporter.

The manuscript is well-written it is of interest to the field of Cation Facilitator Transporters. It is also an excellent example of a combination of different techniques to obtain relevant information on the mechanism of action of a transporter.

I have only a few comments that might need clarification from the authors:

- If the unbinding of Zn2+ to site B triggers the occlusion (and maybe the OF state) and the external pH does not affect that binding, how is it prevented from being always bound to Zn2+ and thus occluded also while it should be transporting protons (B to C panels in Figure 5)? Are there some other factors that I am missing?
- I am not an expert on experiments, but the results for mutants that abolish site C are difficult to understand. For D287A/H263A, the SEC columns data suggest a population of higher oligomers. Still, for the D70A/D287A/H263A and D51A/D287A/H263A, they showed a native dimer. I understand your suggestion that the Fab induces the domain swap, but how do you explain the double mutant SEC column result? Please elaborate.
- Since in the D287A mutant, you are disrupting the preferred tetrahedral coordination of Zn2+, but it still binds, do you observe any waters that compensate for the missing aspartate? Maybe in the MD simulations?

Reviewer #2 (Public Review):

In this work, the authors reported cryo-EM structures of four types of zinc-binding site mutants of a bacterial Zn2+/H+ antiporter YiiP, and proposed distinct structural/functional roles of each of the binding sites in the intramolecular Zn2+ relay and the integrity of the homodimeric structure of YiiP. MST analysis using the mutants with a single Zn2+-binding site at different pH further clarified the pH dependence of Zn2+ binding affinity of each site. Moreover, the inverse Multibind approach refined the CpHMD pKa values of the key Zn2+-binding residues so that they agreed with the MST data. Consequently, energetic coupling of Zn2+ export to the proton-motive force has been suggested. These findings definitely provide new mechanistic insight into this Zn2+/H+ antiporter.

Regrettably, the resolutions of the cryo-EM structures presented in this work are, overall, not high enough to describe detailed structure of some specific regions including the Zn2+-binding sites, and the density is missing for some important regions including the kinked segment of TM5. Further attempts toward higher resolution cryo-EM maps would be beneficial to corroborate their conclusions. Additionally, it may, in a sense, appear that the MD simulations have been carried out forcibly so that the outcomes are compatible with or nicely explain the experimental data. Although this is not unusual or unacceptable, I am concerned that the determined pKa values of some residues, especially of Asp residues at Site A, are unusually high. These outcomes seem to need careful interpretation and discussion.

Reviewer #3 (Public Review):

This contribution focuses on the zinc(II) transporter YiiP, a widely used model system of the Cation Diffusion Facilitator (CDF) superfamily. CDF proteins function as dimers and are typically involved in the maintenance of homeostasis of transition metal ions in organisms from all kingdoms of life. The system investigated here, YiiP, is a prokaryotic zinc(II)/H+ antiporter that exports zinc(II) ions from the cytosol. The authors addressed multiple crucial questions related to the functioning of YiiP, namely the specific role of the three zinc(II) binding sites present in each protomer, the zinc(II):H+ stoichiometry of antiport, and the impact of protonation on the transport process. Clarity on all these aspects is required to reach a thorough understanding of the transport cycle.

The experimental approach implemented in this work consisted of a combination of site-directed mutagenesis, high-quality 3D structural determination by cryoEM, microscale electrophoresis, thermodynamic modeling and molecular dynamics. The mutants generated in this work removed one (for the structural characterization) or two (for microscale electrophoresis) of the three zinc(II) binding sites of YiiP, allowing the authors to unravel respectively the structural role of metal binding at each site and the metal affinity of every site individually. pH-dependent measurements and constant pH molecular dynamics simulations, together with the metal affinity data, provided a detailed per-site overview of dissociation constants and Ka values of the metal-binding residues, casting light on the interplay between protonation and metal binding along the transport cycle. This thermodynamic modeling constitutes an important contribution, whose impact is however limited by the lack of an evaluation of whether the measured affinities in the various mutants differ significantly vs the affinities in the WT protein. In particular, this is true for the mutations disrupting site C, which cause a large-scale change in the quaternary structure of the protein.

Overall the authors were successful in providing a model of the transport cycle (Figure 5) that is convincing and well supported by the experimental data. The demonstration that two protomers act asymmetrically during the cycle is another nice achievement of this work, confirming previous suggestions. This novel overview of the cycle can constitute a basis for future work on other systems such as human ZnT transporters, also exploiting a methodological approach for the thermodynamic of these proteins similar to the one deployed here. The latter approach may be applicable also to other superfamilies of metal transporters.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation