Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAgnese SeminaraUniversity of Genoa, Genoa, Italy
- Senior EditorAleksandra WalczakÉcole Normale Supérieure - PSL, Paris, France
Reviewer #1 (Public Review):
The manuscript presents a framework for studying biomechanical principles and their links to morphology and provides interesting insights into a particular question regarding terrestrial locomotion and speed. The goal of the paper is to derive general principals of directed terrestrial locomotion, speed, and symmetry.
Major strengths:
The manuscript is a unique and creative work that explores performance spaces of a complicated question through computational modeling. Overall, the paper is well written and well crafted and was a pleasure to read.
The methods presented here (variable agents used to represent ultra-simplified body configurations that are not inherently constrained) are interesting and there's significant potential in them for a properly constrained question. For the data that is present here their hypotheses (while they can be anticipated from first principles) are very well validated and serve as a robust validation of these expectations and can help.
Of particular interest was the discussion of the transferability of morphologies designed under one system and moving to another. From a deep-time perspective, of particular interest is the transition from subaqueous to terrestrial locomotion which we know was a major earth life transition. The results of this study show that the best suited morphologies for subaqueous movement are ill-suited (from a locomotor speed standpoint at least) to fully terrestrial locomotion which begs the questions on if there are a suite of forms that have balanced performance in both and how that would differ from aquatic morphologies.
Major weaknesses:
(1) There is a major disagreement between target and parameters.
From a biomechanics perspective the target of this study, Directed Locomotion, is a fairly broad behavioral mode. However, what the authors are ultimately evaluating their model organisms on is a single performance parameter (speed, or distance traveled after 30s). Statements such as "bilateral symmetry showed to be a law-like pattern in animal evolution for efficient directed locomotion purposes" (p 12 line 365-366) are problematic for this reason.
Attaining the highest possible speed is a relevant but limited subset of ways one might interpret performance for directed locomotion. Efficiency, power generation, and limb loading/strain are equally relevant components.
The focus on speed coupled with selection for only the highest performing morphologies, rather than setting a minimum performance threshold fundamentally restricts the dynamics of the system in a way that is not representative of their specified target and pulls the simulations toward a specific, anticipatable, result.
Locomotor efficiency is alluded to later in the manuscript as one of the observed outcomes, but speed is not equivalent to locomotor efficiency (in much the same way that it is not the sole metric for describing performance with respect to directed locomotion). Energy/work/power have not been accounted for in the manuscript so this is not a parameter this study weighs in on.
The data and analyses the others present do show an interesting validation of these methods in assessing first order questions relating the shape of a single performance surface to a theoretical morphology, which has significant potential value.
(2) There is significant population and/or sample size and biasing.
Thirty simulations of a population of 101 morphologies seems small for a study of this kind, particularly looking to investigate such a broad question at an abstract level. Particularly when the top 50% of morphologies are chosen to mutate. It would be very easy for artificial biases to rapidly propagate through this system depending on the parameters bounding the formation of the initial generation.
This strong selection choosing the best 50 morphologies and mutating them enforces an aggressive effect that simulates and even more potent phylogenetic inertia than one might anticipate for an actual evolutionary history (it's no surprise then that all of the simulations were able to successfully retrieve a suite of morphotypes that recovered the performance peak for this system within 1500 generations)
Similarly, why is it that a 4^3 voxel limit was chosen? One can imagine that an increase in this voxel limit would allow for the development of more extreme geometries, which might be successful. It is likely that there might be computational resource constraints involved in this, it would be useful for the authors to add additional context here.
Review of resubmission:
I appreciate the clarification of points dealing with the details of computational modeling and methods and clarifications throughout the text.
However, the authors have failed to address the major weaknesses that were previously identified, specifically regarding the broader conclusions of the work, that either 1) the authors need to use an additional metric besides average speed, or 2) the conclusions need to be significantly reigned in to reflect the very narrow nature of the work.
Reviewer #2 (Public Review):
Summary:
I believe the authors have done a wonderful job at dissecting a very complex topic, starting with basic building blocks of locomotion and introducing a powerful simulation approach to the exploring the landscape of growth and form in intelligent behavior.
Strengths:
This is a very original, timely, and robust piece of work that I believe can inspire further computational studies in evo-devo-etho.
Weaknesses:
More detail on the simulations and also greater clarity regarding the generalizability of their claims would improve the message and further studies.