Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorCaleb KemereRice University, Houston, United States of America
- Senior EditorLaura ColginUniversity of Texas at Austin, Austin, United States of America
Reviewer #1 (Public Review):
Levy and Hasselmo investigated the representational codes of dorsal hippocampus neurons in episodic memory and spatial navigation. Specifically, how new learning affects previously acquired spatial memory. They asked if the hippocampal representational codes evolve in a different manner when two tasks governed by different rules are learnt in a single environment vs. when each rule is learnt in a separate environment. The two rules they used were based on the classical Packard & McGaugh (1996) experiment. In the original 1996 experiment there was a striatal-dependent response-based task vs. a hippocampal-dependent map-based task. In the current paper they either trained the two types of rules (response vs. map based) in two different contexts (Two-Maze), or in a single context (One-Maze). They found that the remapping of the second time in the response-based rule task was greater in the One-Maze variant of the experiment than in the Two-Maze variant, and they interpreted this by suggesting that in the One-Maze variant, the different intermediate map-based task interfered with the representation in the second response-based task, while in the Two-Maze variant no such interference occurred, and thus the hippocampal map remained more stable.
The results of this paper are well supported by data; however, we believe the conclusion of paper should be different than the conclusion the authors have arrived at.
Major issue:
1. The main claim is that a new behavioral rule in a familiar environment leads to an increase in the level of remapping of hippocampal activity when returning to the original rule in the same environment. However, we are worried that the result is not due to the interference by a different task in the same environment, but rather by the fact that the mouse spent more time in the environment, causing a larger representational drift. Consider, for example, the change in correlation in Figure 4E over days. In all cases, there is a maze-dependent reduction in correlation from day to day. This reduction continues in the One-maze case also when changing the rule, suggesting that what determined the larger reduction is the time spent in each context, and not the actual change of rule or behavior. Thus it is probable that the fact that the mouse was longer in the first maze in the one-maze variant was enough to create a difference in correlation. See also Khatib et al., bioRxiv, 2022 on the issue of context-dependent drift. To actually control for that, we suggest that the mouse spends twice the time in the first maze during the first Turn-Right session, in the Two-maze variant, and then the comparison will be more valid, by equating the amount of time spent in the first maze in-between comparisons, in the two types of experiments.
Additional points:
2. Figure 1.d: While behaving differently, is there a difference in the representation? (e.g. mouse 2 on 7th day showed in the beginning very bad behavior). What is the relation between the reduction in performance and the change in representation?
3. Figure 3.c: We suggest to get a better estimate of the significance of the effect here using shuffling. Specifically, it could be a good idea to distinguish between signal correlations (derived from the overlapping spatial fields) vs. noise correlations. To what extent are the correlations dependent on spatial overlap? It could be worthwhile to determine the type of correlation: Is it due to the fact that the maps are similar for overlapping place cells, or is there noise correlations between these cells?
4. Figure 4.a: What is the explanation for the reduction in correlation between days 5 and 6?
5. Supplementary Figure 2: Higher correlations in all arms - note the higher correlation in all arms in the Two-Maze vs. the One-Maze, suggesting again that the effect is related to the longer time in the context, and not so much to the rule-change.
6. Methods: the researchers note that the animals were previously used in a different study. This should be stated clearly also in the results.
Reviewer #2 (Public Review):
In this study, the authors design a study to examine how place cell representations in the hippocampus change when the rules of a navigational task change. In one group of animals (group 1), the rules change in the same environment as the initial task was performed, and in the second group of animals (group 2), the task with the new rules is presented in a different environment, and then the animals are returned to the first environment with the original rule. (Briefly, on a cross maze, animals first learned to turn right, then the task rule changed to require turning east, and then the rule changed back to turning right). Broadly, using one photon calcium imaging with head mounted mini microscopes, the authors show that, at both the single cell and population level, more remapping occurs in group 1 animals in the initial environment than in group 2 animals.
This work is bolstered by the unique and rigorous way in which the authors track cells across days, in which they compare the rotation angles of crossed-registered groups of cells-I will definitely be using this in the future! The work also benefits from the extensive analysis of both temporal and spatial correlations of cellular activity. However, there are several shortcomings of the behavioral setup and learning conditions that need to be addressed in order to fully support the conclusions of the authors:
First, group 1 animals spend significantly more time in maze 1 than group 2 animals, since group two animals were switched to a different maze when the rule was changed. It is thus difficult to make direct comparison between the two groups, particularly in the last phase of experimentation when although both groups are in the first environment with the task rule, group 1 has experienced maze one for 6 days while group 2 has only experienced in for 3 days. It is therefore potentially difficult to disentangle differences caused by task changes versus length of environmental exposure.
Secondly, and similarly, during the task period, group 1 animals only have exposure to one environment while group 2 animals have exposure to 2 environments. Ideally, group 1 animals would also be exposed to environment 2, to rule out any potential effects of experiencing a novel environment may have on place cell representations, otherwise this cannot be disentangled from the effect of a task rule change.
Third, two concerns about how the animals are trained: First, if I am interpreting the methods correctly, both Group 1 and Group 2 animals are trained so turn-right is on one maze and turn east is on another way. As such, both groups thus have an "original understanding" that different rules are associated with different mazes. This seems potentially confounding given that it is consistent with the future training of Group 2 but not Group 1 mice. Additionally confounding is the fact that, because of the pretraining, group 1 mice have actually experienced the task in 3 different environments; I am unclear if and how this might be expected to affect results. Additionally, it is methodically unclear why pre-training occurs in a different environment than testing does, and what the criterion is for switching the animals from pre-training to training.
It would additionally be useful to discuss the results of this study in the context of spatial and non-spatial tasks. The authors, usefully, spend a significant portion of the paper comparing their results to results seen during fear extinction. It might be worth contextualizing the differences in how fear conditioning has a contextual "background" (i.e., the animals are conditioned to the context) while in their experiment the entire task is based entirely on navigation.
Overall, this is an interesting manuscript that attempts to address how contextual representations change as task parameters change. While the paper contains thorough statistical analysis but could benefit from more discussion of behavior in the context of learning as well as more rigorous behavioral controls. This work will be of interest to researchers studying hippocampus, navigation, and learning.
Reviewer #3 (Public Review):
The fundamental question that the authors address in this work is how our brain encodes when two events occur in the same context as against two events occurring in different contexts. Often in life, we encounter situations where it is difficult to alter the memory specifically associated with a place, for e.g. when we try to find our favourite brand of soap after the shopkeeper rearranges the shelves. Here the authors hypothesise that the acquisition of new memory, bound by a context /space, results in extensive remapping. Presumably, such remapping is manifested as an increased difficulty in acquiring new memories that are linked through space, especially when we have to remember both the old and the new. Using a combination of a modified behavioural task and in vivo imaging of neuronal activity, the authors test this hypothesis in mice. The spatial task requires the animal to learn two navigational rules of when to make a turn. Rule 1 requires the animal to make a turn with respect to itself (turn right), and Rule 2 requires the animal to turn with respect to the outside world (turn East). This is achieved by training the mice in two distinct contexts (mazes). Having trained the mice, they acquire the neuronal activation data and analysis through i) correlation matrices and ii) population vectors they test and show that the hypothesis is true. The manuscript is well-written and easy to follow in general. One of the important aspects of this manuscript is the clarity and detail with which the methods are described. The descriptions are unambiguous and complete in detail. This needs to be appreciated.
One of the soft spots of the study is the following: The animal learns to perform the task in two different contexts. It could also be interpreted as a change in context triggering the change in rule rather than a specific context predicting a specific rule as interpreted. I would like to know the authors' views on this. Additionally, the data is from one experiment with six mice, and the data is analyzed through different frameworks to glean information. This is both the boon and bane of the study. Independent/additional cross-validation of the overall effect would be nice to establish the observed phenomena. For e.g., the use of IEGs to identify the ensembles across the two scenarios, and/or inactivation of CA1 to show that rule change is affected or the first memory is also affected.