ScRNA-seq of Diverse Pheochromocytoma Patients Reveals Distinct Microenvironment Characteristics and Supports an Informative Molecular Classification System

  1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science Center, Beijing 100191, China
  2. Shenzhen Institute of Ladder for Cancer Research, Shenzhen 518020, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Yongliang Yang
    Dalian University of Technology, Dalian, China
  • Senior Editor
    Caigang Liu
    Shengjing Hospital of China Medical University, Shenyang, China

Reviewer #1 (Public Review):

Proposed significance: Targeted therapy in general has miraculous results.
Good and detailed study of molecular characteristics and microenvironment of tumor of PCCs .However molecular classification system based on limited number of cases is not acceptable.
Early diagnosis is of utmost importance in patient care and the next important is classification of tumor for treatment purposes.
Further research is needed to develop Molecular signature of tumor types . This will help in targeted therapy and precision medicine.

Strength: Molecular characterisation of tumor

Weakness: The sample size is very small from a statistical point of view to derive a conclusion. Only Observations can be recorded
Transcriptome profiles of 11 tumor tissues were studied but they belong to the same 5 patients.

Validation of tumor tissue: comparison is made with adjacent normal tissue (n=5 )
Chromogranin IHC marker is used for identifying tumor cells. However, chromogranin marker positivity is also seen in normal adrenal medulla /chromaffin cells.
Any better evidence of Validation of tumor tissue?

Tumor microenvironment:
CD8+T cells: it is mentioned in the article that there is lack of CD8+ Tcells in both types of PCC, (Page 5, line 16)

However Figures 7 D, E and F show presence of CD8+T cells. Needs clarification or quantification.

Tumor heterogeneity : Page 7 Line 5
PASS system is used by authors for predicting malignant potential and tumor heterogeneity.
Molecular methods need to be used for evaluating tumor heterogeneity rather than histomorphology.

Ground of comparision is not valid. PASS system is based on histomorphology and present study/attempt at classification is based on molecular studies. So they cannot be compared .

Page 5 ,Line 18: HLA downregulation is observation and its regulation by RET is a possibility. Its involvement in tumor progression needs solid proof. So targeting kinase pathway for therapy is only a possibility.

Reviewer #2 (Public Review):

Pheochromocytoma (PCC), a rare neuroendocrine tumor, is currently considered malignant, but non-surgical treatment options are very limited and there is an urgent need for more basic research to support the development of new therapeutic approaches. In the present work, the authors described the intra- and inter-tumor heterogeneity by performing scRNA-seq on tumor samples from five patients with PCC, and evaluated the corresponding PASS scores.

Strengths: The tumor microenvironment of PCC was characterized and potential molecular classification criteria based on single-cell transcriptomics were proposed, offering new theoretical possibilities for the treatment of PCC. The article is logically written and the results are clearly presented.

Weaknesses: I still have concerns about some of the article's content. My main concerns are: In this study, the authors seem to have demonstrated the inaccuracy of a subjective score (PASS) by another objective means (scRNA-seq). In fact, the multiparametric scoring systems such as PASS are no longer endorsed in the 2022 WHO guidelines. The PASS scoring system does not have a high positive predictive value for risk stratification of PCC metastasis, but "rule-out" of metastasis risk with a PASS score of <4 seems to be fairly reliable. Could the authors please explain why the PASS scores were chosen rather than the GAPP, m-GAPP, or COPPS scoring systems? If possible, please try to emphasize the importance and necessity of using the PASS scoring system, either by replacing it with a more acceptable scoring system or by deleting the relevant part, which does not seem to be very relevant to the subject of the article.

Moreover, I noted the following statement in the text "There are no studies reporting the composition of immune cells in PCCs. The few published studies investigating the immune microenvironment of PCCs have been limited to the expression of PDL1 at the histological level and to assessment of the tumor mutation burden (TMB) at the genomic level, and these results only seem to suggest that PCCs are immune-cold (Bratslavsky et al, 2019; Guo et al, 2019; Pinato et al, 2017)." This statement is very wrong. The reason for this error may be that the authors did not adequately search and read the relevant literature. I noticed that almost all references in this paper are dated 2021 and earlier, which is surprising. Please update the references cited in this paper in a comprehensive and detailed manner; referring to literature published too early may lead to inadequate discussion or even one-sided or incorrect conclusions and conjectures.

For example, the text statement "Combined with previously reported negative regulatory effects of kinases (such as RET, ALK, and MEK) on HLA-I expression on tumor cells (Brea et al., 2016; Oh et al., 2019), we speculate that the possible reason for inability in recruiting CD8+ T cells of kinase-type PCCs is the downregulation of HLA-I in tumor cells regulated by RET, while the mechanism of immune escape in metabolism-type PCCs (with antigen presentation ability) needs to be further explored. Our results also indicate that the application of immunotherapy to metabolism-type PCCs is likely unsuitable, while kinase-type PCCs may have the potential of combined therapy with kinase inhibitors and immunotherapy." is rather one-sided; in fact, the presence of immune escape in PCC, as the malignancy with the lowest tumor mutation compliance, has been well characterized, and the low number of infiltrating T cells in tumor tissue may be influenced by a variety of factors, such as the release of catecholamines, the expression of inhibitory receptors on the surface of T cells, and so on, although genetic mutation still plays the most crucial role. The Discussion section also has a lot of information that needs to be updated or corrected and expanded, so please rewrite the above section with sufficiently updated references.

Below I have listed some references for the authors to read:
Tufton N, Hearnden RJ, Berney DM, et al. The immune cell infiltrate in the tumour microenvironment of phaeochromocytomas and paragangliomas. Endocr Relat Cancer. 2022;29(11):589-598. Published 2022 Sep 19. doi:10.1530/ERC-22-0020
Jin B, Han W, Guo J, et al. Initial characterization of immune microenvironment in pheochromocytoma and paraganglioma. Front Genet. 2022;13:1022131. Published 2022 Dec 7. doi:10.3389/fgene.2022.1022131
Celada L, Cubiella T, San-Juan-Guardado J, et al. Pseudohypoxia in paraganglioma and pheochromocytoma is associated with an immunosuppressive phenotype. J Pathol. 2023;259(1):103-114. doi:10.1002/path.6026
Calsina B, Piñeiro-Yáñez E, Martínez-Montes ÁM, et al. Genomic and immune landscape Of metastatic pheochromocytoma and paraganglioma. Nat Commun. 2023;14(1):1122. Published 2023 Feb 28. doi:10.1038/s41467-023-36769-6

Reviewer #3 (Public Review):

The main findings of this study are as follows: (1) The authors defined "metabolism-type" and "kinase-type" in unclassified sporadic PCC patients through the single-cell transcriptomics-based differentially expressed genes and functional enrichment analyses. (2) They identified the limitation of Pheochromocytoma of the Adrenal gland Scaled Score (PASS) system and suggested the combination of molecular diagnostic methods like scRNA-seq with pathological tools like PASS in aiding the clinical evaluation of PCCs. (3) Analysis of the PCC microenvironment revealed a lack of immune cell infiltration in both metabolism-type and kinase-type PCCs, while only the kinase-type PCC patient exhibited the low expression of HLA-Ⅰ that potentially regulated by RET, providing clues for the combined therapy with kinase inhibitors and immunotherapy in kinase-type PCC patients.

The main strength of this manuscript is that it involves scRNA-seq analysis of an extremely rare tumor type-PCCs, which presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs and further provides clues for potential therapeutic strategies to treat PCCs. The authors also validated the scRNA-seq analysis results (such as the expression levels of marker genes and the distribution of immune cells in the PCC microenvironment) with immunocytochemistry and multispectral immunofluorescent staining. In summary, the findings in this manuscript are quite interesting and significant, which will potentially be valuable for the molecular classification of PCCs.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation