Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorWei YanWashington State University, Pullman, United States of America
- Senior EditorDiane HarperUniversity of Michigan-Ann Arbor, Ann Arbor, United States of America
Reviewer #1 (Public Review):
The goal of the authors is to use whole-exome sequencing to identify genomic factors contributing to asthenoteratozoospermia and male infertility. Using whole-exome sequencing, they discovered homozygous ZMYND12 variants in four unrelated patients. They examined the localization of key sperm tail components in sperm from the patients. To validate the findings, they knocked down the ortholog in Trypanosoma brucei. They further dissected the complex using co-immunoprecipitation and comparative proteomics with samples from Trypanosoma and Ttc29 KO mice. They concluded that ZMYND12 is a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.
The major strengths are that the authors used the cutting-edge technique, whole-exome sequencing, to identify genes associated with male infertility, and used a new model organism, Trypanosoma brucei to validate the findings; together with other high-throughput tools, including comparative proteomics to dissect the protein complex essential for normal sperm formation/function. The major weakness is that limited samples could be collected from the patients for further characterization by other approaches, including western blotting and TEM.
In general, the authors achieved their goal and the conclusion is supported by their results. The findings not only provide another genetic marker for the diagnosis of asthenoteratozoospermia but also enrich the knowledge in cilia/flagella.
Reviewer #2 (Public Review):
The manuscript "Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function" by Dacheux et al. interestingly reported homozygous deleterious variants of ZMYND12 in four unrelated men with asthenoteratozoospermia. Based on the immunofluorescence assays in human sperm cells, it was shown that ZMYND12 deficiency altered the localization of DNAH1, DNALI1, WDR66 and TTC29 (four of the known key proteins involved in sperm flagellar formation). Trypanosoma brucei and mouse models were further employed for mechanistic studies, which revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1. Their findings are solid, and this manuscript will be very informative for clinicians and basic researchers in the field of human infertility.
Reviewer #3 (Public Review):
In this study, the authors identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to ZMYND12-variant-bearing human sperm. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. The manuscript is informative for the clinical and basic research in the field of spermatogenesis and male infertility.