Associative memory neurons of encoding multi-modal signals are recruited by neuroligin-3 mediated new synapse formation

  1. College of Life Science, University of Chinese Academy of Sciences, Beijing China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America
  • Senior Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America

Reviewer #1 (Public Review):

This manuscript by Xu and colleagues addresses the important question of how multi-modal associations are encoded in the rodent brain. They use behavioral protocols to link stimuli to whisker movement and discover that the barrel cortex can be a hub for associations. Based on anatomical correlations, they suggest that structural plasticity between different areas can be linked to training. Moreover, they provide electrophysiological correlates that link to behavior and structure. Knock-down of nlg3 abolishes plasticity and learning.

This study provides an important contribution as to how multi-modal associations can be formed across cortical regions.

Reviewer #2 (Public Review):

This manuscript by Xu et al. explores the potential joint storage/retrieval of associated signals in learning/memory and how that is encoded by some associative memory neurons using a mouse model. The authors examined mouse associative learning by pairing multimodal mouse learning including olfactory, tactile, gustatory, and pain/tail heating signals. The key finding is that after associative learning, barrel neurons respond to other multi-model stimulations. They found these barrel cortical neurons interconnect with other structures including piriform cortex, S1-Tr and gustatory cortical neurons. Further studies showed that Neuroligin 3 mediated the recruitment of associative memory neurons during paired stimulation group. The authors found that knockdown Neuroligin 3 in the barrel cortex suppressed the associative memory cell recruitment in the paired stimulation learning. Overall, while the findings of this study are interesting, the concept of associative learning involving multiple functionally connective cortical regions is not that novel. While some data presented are convincing, the other seems to lack rigor. In addition, more details and clarification of the experimental methods are needed.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation