Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMichael CzechUniversity of Massachusetts Medical School, Worcester, United States of America
- Senior EditorDavid JamesUniversity of Sydney, Sydney, Australia
Reviewer #1 (Public Review):
The present study examined the physiological mechanisms through which impaired TG storage capacity in adipose tissues affects systemic energy homeostasis in mice. To accomplish this, the authors deleted DGAT1 and DGAT2, crucial enzymes for TG synthesis, in an adipocyte-specific manner. The authors found that ADGAT DKO mice substantially lost the adipose tissues and developed hypothermia when fasted; however, surprisingly, ADGAT KO mice were metabolically healthy on a high-fat diet. The authors found that it was accompanied by elevated energy expenditure, enhanced glucose uptake by the BAT, and enhanced browning of white adipose tissues. This unique animal model provided exciting opportunities to identify new mechanisms to maintain systemic energy homeostasis even in a compromised energy storage capacity. Overall, the data are compelling and well support the conclusion of this paper. The manuscript is clearly written.
Reviewer #2 (Public Review):
Here, Chitraju et al have studied the phenotype of mice with an adipocyte-specific deletion of the diglycerol acyltransferases DGAT1 and DGAT2, the two enzymes catalyzing the last step in triglyceride biosynthesis. These mice display reduced WAT TG stores but contrary to their expectations, the TG loss in WAT is not complete and the mice are resistant to a high-fat diet intervention and display a metabolically healthier profile compared to control littermates. The mechanisms underlying this are not entirely clear, but the double knockout (DKO) animals have increased EE and a lower RQ suggesting that enhanced FA oxidation and WAT "browning" may be involved. Moreover, both adiponectin and leptin are expressed in WAT and are detectable in circulation. The authors propose that "the capacity to store energy in adipocytes is somehow sensed and triggers thermogenesis in adipose tissue. This phenotype likely requires an intact adipocyte endocrine system...." Overall, I find this to be an interesting notion.
Reviewer #3 (Public Review):
In this study, the authors sought to test the hypothesis that blocking triglyceride storage in adipose tissue by knockout of DGAT1 and DGAT2 in adipocytes would lead to ectopic lipid deposition, lipodystrophy, and impaired glucose homeostasis. Surprisingly, the authors found the opposite result, with DGAT1/2 DKO in adipocytes leading to increased energy expenditure, minimal ectopic lipid deposition, and improved glucose homeostasis with HFD feeding. These metabolic improvements were largely attributed to increased beiging of the white fat and increased brown adipose tissue activity. This study provides an interesting new paradigm whereby impairing fat storage, the major function of adipose tissue, does not lead to severe metabolic disease, but rather improves it. The authors provide a comprehensive assessment of the metabolism of these DKO mice under chow and HFD conditions, which support their claims. The study lacks in mechanistic insight, which would strengthen the study, but does not detract from the authors' major conclusions.
The conclusions of this paper are mostly well-supported, but some aspects should be clarified and extended.
1. The authors claim the beiging of WAT of ADGAT DKO mice is partially through the SNS; however, housing these mice at thermoneutrality did not block the beiging, which seems to negate that claim. Is there evidence of increased cAMP/PKA activation in the adipose tissues of ADGAT DKO to support the premise that the beiging is activated by the SNS, even at thermoneutrality? Alternatively, if the authors block beta-adrenergic receptors with antagonists, such as propranolol, does this block the beiging?
2. It's been shown that autocrine FGF21 signaling is sufficient to promote beiging of iWAT (PMID 34192547). The authors show Fgf21 mRNA is increased in iWAT of chow-fed ADGAT DKO mice. Is Fgf21 also increased in iWAT of HFD-fed mice? This and measurement of local FGF21 secretion by adipocytes would strengthen this study.
3. The primary adipocytes in Figure S6A do not appear to have any depletion in TG stores, suggesting this may not be an appropriate model to study the cell autonomous effects of ADGAT DKO on beiging. The authors should use DGAT inhibitors instead to corroborate or investigate this question.
4. Multiple studies have shown the importance of lipolysis for the activation of brown and beige thermogenic programs (PMID 35803907, 34048700) and can be potentiated by HFD feeding (PMID 34048700). In the absence of DGAT activity in ADGAT DKO mice, it seems plausible that free fatty acids could be elevated, especially in the context of HFD. Are free fatty acids elevated in the adipose tissues, which could promote thermogenic gene expression?
5. The lack of ectopic lipid deposition in the ADGAT DKO mice is striking, especially under HFD conditions. Can the increased energy expenditure fully account for the difference in whole body fat accumulation between Control and DKO mice or have the mice activated other energy disposal mechanisms? Please discuss or include measurement of fat excretion in the feces to strengthen this study.