Ebola Virus Sequesters IRF3 in Viral Inclusion Bodies to Evade Host Antiviral Immunity

  1. Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, 100850, China
  2. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Sara Sawyer
    University of Colorado Boulder, Boulder, United States of America
  • Senior Editor
    Diane Harper
    University of Michigan-Ann Arbor, Ann Arbor, United States of America

Reviewer #1 (Public Review):

The authors were trying to investigate whether viral IBs are involved in antagonizing IFN-I production during EBOV trVLPs infection. They found that IRF3 is hijacked and sequestered into EBOV IBs after viral infection, thereby leading to the spatial isolation of IRF3 with TBK1 and IKKε. In such a progress, the activity of IRF3 is suppressed and downstream IFN-I induction is inhibited. The authors designed many experiments, such as the PLA that examined the colocalization, to support their conclusions. However, necessary negative controls were missed in several assays. More key index is needed to be examined in several assays.

The paper is well organized and most data in this paper could support the conclusions, while there are several issues that need to be further solved.

  1. In Figure 2-4, authors should examine the expression of downstream IFNs as well as the phosphorylation and nuclear localization of IRF3 to further prove the suppression of IRF3 activity by infecting with trVLPs.

  2. In Figure 5, to better prove the conclusion that EBOV NP and VP35 play an important role in sequestering IRF3 in IBS, authors should add the "NP+VP35+VP30" and "NP+VP35+VP24" groups to reperform the assay.

  3. In Figure 6f, the expression of STING should be examined by immunostaining to show the knockdown efficiency in trVLPs-infected cells.

Reviewer #2 (Public Review):

The manuscript by Zhu et al explored molecular mechanisms by which Ebola virus (EBOV) evades host innate immune response. EBOV has a number of means to shut down the type I interferon induction (by viral VP35 protein) and block type I interferon action (by viral VP24 protein). This study reported a new mechanism that inclusion body (IB) used for viral replication sequesters IRF3, a key transcription factor involved in the interferon signaling, resulting in blockade of downstream type I interferon gene transcription. This finding is potentially interesting and may provide a new insight into EBOV's evasion of innate immunity. However, there are some flaws in the experimentations and analyses that need to be addressed.

  1. Most of experiments were performed by transfection of trVLP plasmids, which is very different from virus infection. The conclusions should be examined and verified in the context of virus infection.

  2. Fig 1 - VP35 displayed a classical IB staining only in Panel A, while much less so in Panel C and not in panel B. It seemed that the VP35 staining images were chosen in a way towards the authors' favor. The statistical analysis of co-localization of VP35 and IRF3, TBK1 or IKKe should be performed to draw the conclusion. Another concern is that IKKe is normally lowly expressed under a rest condition and becomes induced only when the interferon signaling is activated. It seemed to be expressed at a high level even when the interferon signaling is blocked in Panel C. The authors should comment on this discrepancy.

  3. Fig 2 - Was this experiment done by transfection or infection? The description of result is not consistent with the figure legend. The labeling was also not consistent between panel A and B. I would suggest performing Western blot to analyze the expression level of IRF3.

  4. Fig 3 and 4 - As VP35 is well known for its highly efficient blockade of type I interferon activation, how would the authors differentiate the effect of VP35 alone from the sequestration of IRF3 in IBs in these experiments?

  5. Fig 3 - PolyIC can activate both RLR and TLR signaling pathways. Can the author comment on which pathway it activates in this experiment?

  6. The authors demonstrated that VP35 interacts with STING and recruit the latter to IBs. How would this affect the function of STING given that STING plays essential roles in cGAS/cGAMP pathway?

  7. It is difficult to follow the logics of Fig 7. The expression level of each viral protein should be determined. Ideally, a mutation in VP35 that disrupts its ability to antagonize the interferon signaling but still allows for the IB formation can be used to assess the relative contribution of IB sequestering IRF3.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation