Bias in FGFR1 signaling in response to FGF4, FGF8, and FGF9

  1. Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
  2. Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
  3. International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
  4. Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany
  • Senior Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany

Public Review:

In this manuscript, Karl et al. explore mechanisms underlying the activation of the receptor tyrosine kinase FGFR1 and stimulation of intracellular signaling pathways in response to FGF4, FGF8, or FGF9 binding to the extracellular domain of FGFR1. Quantitative binding experiments presented in the manuscript demonstrate that FGF4, FGF8, and FGF9 exhibit distinct binding affinities towards FGFRs. It is also proposed that FGF8 exhibits "biased ligand" characteristics that is manifested via binding and activation FGFR1 mediated by "structural differences in the FGF- FGFR1 dimers, which impact the interactions of the FGFR1 trans membrane helices, leading to differential recruitment and activation of the downstream signaling adapter FRS2".

Major points:

1. Previous studies have demonstrated that the variability of signal transduction stimulated by different FGF family members originates from their preferential activation of different members of the FGFR family (Ornitz et al., 1996). For example, it was previously shown that members of the FGF8 subfamily preferentially activate FGFR3c, whereas members of the FGF4 subfamily activate FGFR1c more potently than other FGFs. Moreover, it was shown that FGF18, a member of the FGF8 subfamily, preferentially binds to and activates the FGFR3c isoform. Indeed, this can be seen in the data shown in Figure 3 in this manuscript, where maximum levels of FGFR1 pY653/4 and pFRS2 are reached at different concentrations when stimulated with increasing concentrations of each ligand in HEK293T cells. In order to be sure that the 'biased agonist' described in this manuscript for FGF8 binding is not caused by binding preference towards different FGFR members, the authors should present data comparing cell signaling via FGFR3c stimulated by FGF4, FGF8, and FGF9.

2. It is well-established that FGFR signaling by canonical FGF family members including FGF4, FGF8, and FGF9 is dependent on interactions of heparin or heparan sulfate proteoglycans (HSPG) to the ligand the receptors. Differential contributions of heparin to cell signaling mediated by FGF4, FGF8, and FGF9 binding and activation of different FGFRs expressed in RCS cells as this cell express endogenous HSPG molecules. This question should be addressed by comparing cell signaling via FGFRs ectopically expressed in BAF/3 cells (which do not possess endogenous FGFRs and HSPG) stimulated by FGF4, FGF8, and FGF9 in the absence or presence of different heparin concentrations. This approach has been applied many times in the past to explore and establish the role of heparin in control of ligand induced FGFR activation. It is impossible to interpret the FGFR binding characteristics and cellular activates of FGF4, FGF8, and FGF9 in the absence of information about the role of heparin in their binding and activation.

3. It is not clear how some of the experimental data were analyzed. Blots in Figures 3A and 3B should include controls (total FGFR1 for pY653/4 and total FRS for pFRS2). How are the data shown in Figure 3C normalized? It does look like the level of phosphorylation was all normalized against the strongest signals irrespective of which ligand was used. Each data representing each ligand should be separately normalized.

4. In page 6, authors used the plot shown in Figure 3 for 'FGFR downregulation' to conclude that "the effect of FGF4 on FGFR1 downregulation is smaller when compared to the effects of FGF8 and FGF9. However, it is unclear how the data shown in the plot was normalized - none of the data seem to reach "1.0". Moreover, the plot seems to suggest that FGF4 can strongly downregulate FGFR as it can downregulate FGFR with higher potency.

5. The structural basis of FGFR1 ligand bias and the different dimeric configurations and interactions between the kinase domain of FGFR1 dimers are not warranted (Figure 6). In the absence of any structural experimental data of different forms of FGFR dimers stimulated by FGF ligands the model presents in the manuscript is speculative and misleading.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation