Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAlex FornitoMonash University, Clayton, Australia
- Senior EditorFloris de LangeDonders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
Reviewer #1 (Public Review):
SUMMARY:
In this paper, Luppi et al., apply the recently developed integrated information decomposition to the question how the architecture of information processing changes when consciousness is lost. They explore fMRI data from two different populations: healthy volunteers undergoing reversible anesthesia, as well as from patients who have long-term disorders of consciousness. They show that, in both populations, synergistic integration of information is disrupted in common ways. These results are interpreted in the context of the SAPHIRE model (recently proposed by this same group), that describes information processing in the brain as being composed of several distinct steps: 1) gatekeeping (where gateway regions introduce sensory information to the global synergistic workspace where 2) it is integrated or "processed" before 3) by broadcast back to to the brain.
I think that this paper is an excellent addition to the literature on information theory in neuroscience, and consciousness science specifically. The writing is clear, the figures are informative, and the authors do a good job of engaging with existing literature. While I do have some questions about the interpretations of the various information-theoretic measures, all in all, I think this is a significant piece of science that I am glad to see added to the literature.
One specific question I have is that I am still a little unsure about what "synergy" really is in this context. From the methods, it is defined as that part of the joint mutual information that is greater than the maximum marginal mutual information. While this is a perfectly fine mathematical measure, it is not clear to me what that means for a squishy organ like the brain. What should these results mean to a neuro-biologist or clinician?
Right now the discussion is very high level, equating synergy to "information processing" or "integrated information", but it might be helpful for readers not steeped in multivariate information theory to have some kind of toy model that gets worked out in detail. On page 15, the logical XOR is presented in the context of the single-target PID, but 1) the XOR is discrete, while the data analyzed here are continuous BOLD signals w/ Gaussian assumptions and 2) the XOR gate is a single-target system, while the power of the Phi-ID approach is the multi-target generality. Is there a Gaussian analog of the single-target XOR gate that could be presented? Or some multi-target, Gaussian toy model with enough synergy to be interesting?
I think this would go a long way to making this work more accessible to the kind of interdisciplinary readership that this kind of article with inevitably attract.
STRENGTHS
The authors have a very strong collection of datasets with which to explore their topic of interest. By comparing fMRI scans from patients with disorders of consciousness, healthy resting state, and various stages of propofol anesthesia, the authors have a very robust sample of the various ways consciousness can be perturbed, or lost. Consequently, it is difficult to imagine that the observed effects are merely a quirk of some biophysical effect of propofol specifically, or a particular consequence of long-term brain injury, but do in fact reflect some global property related to consciousness. The data and analyses themselves are well-described, have been previously validated, and are generally strong. I have no reason to doubt the technical validity of the presented results.
The discussion and interpretation of these results is also very nice, bringing together ideas from the two leading neurocognitive theories of consciousness (Global Workspace and Integrated Information Theory) in a way that feels natural. The SAPHIRE model seems plausible and amenable to future research. The authors discuss this in the paper, but I think that future work on less radical interventions (e.g. movie watching, cognitive tasks, etc) could be very helpful in refining the SAPHIRE approach.
Finally, the analogy between the PID terms and the information provided by each eye redundantly, uniquely, and synergistically is superb. I will definitely be referencing this intuition pump in future discussions of multivariate information sharing.
WEAKNESSES
I have some concerns about the way "information processing" is used in this study. The data analyzed, fMRI BOLD data is extremely coarse, both in spatial and temporal terms. I am not sure I am convinced that this is the natural scale at which to talk about information "processing" or "integration" in the brain. In contrast to measures like sample entropy or Lempel-Ziv complexity (which just describe the statistics of BOLD activity), synergy and Phi are presented here as quasi-causal measures: as if they "cause" or "represent" phenomenological consciousness. While the theoretical arguments linking integration to consciousness are compelling, is this is right data set to explore them in?
For example, the work by Newman, Beggs, and Sherril (nee Faber), synergy is associated with "computation" performed in individual neurons: the information about the future state of a target neuron that is only accessible when knowing both inputs (analogous to the synergy in computing the sum of two dice). Whether one thinks that this is a good approach neural computation or not, it fits within the commonly accepted causal model of neural spiking activity: neurons receive inputs from multiple upstream neurons, integrate those inputs and change their firing behavior accordingly.
In contrast, here, we are looking at BOLD data, which is a proxy measure for gross-scale regional neural activity, which itself is a coarse-graining of millions of individual neurons to a uni-dimensional spectrum that runs from "inactive to active." It feels as though a lot of inferences are being made from very coarse data.
REFERENCES:
1. Newman, E. L., Varley, T. F., Parakkattu, V. K., Sherrill, S. P. & Beggs, J. M. Revealing the Dynamics of Neural Information Processing with Multivariate Information Decomposition. Entropy 24, 930 (2022).
Reviewer #2 (Public Review):
The authors analysed functional MRI recordings of brain activity at rest, using state-of-the-art methods that reveal the diverse ways in which the information can be integrated in the brain. In this way, they found brain areas that act as (synergistic) gateways for the 'global workspace', where conscious access to information or cognition would occur, and brain areas that serve as (redundant) broadcasters from the global workspace to the rest of the brain. The results are compelling and consisting with the already assumed role of several networks and areas within the Global Neuronal Workspace framework. Thus, in a way, this work comes to stress the role of synergy and redundancy as complementary information processing modes, which fulfill different roles in the big context of information integration.
In addition, to prove that the identified high-order interactions are relevant to the phenomenon of consciousness, the same analysis was performed in subjects under anesthesia or with disorders of consciousness (DOC), showing that indeed the loss of consciousness is associated with a deficient integration of information within the gateway regions.
However, there is something confusing in the redundancy and synergy matrices shown in Figure 2. These are pair-wise matrices, where the PID was applied to identify high-order interactions between pairs of brain regions. I understand that synergy and redundancy are assessed in the way the brain areas integrate information in time, but it is still a little contradictory to speak about high-order in pairs of areas. When talking about a "synergistic core", one expects that all or most of the areas belonging to that core are simultaneously involved in some (synergistic) information processing, and I do not see this being assessed with the currently presented methodology. Similarly, if redundancy is assessed only in pairs of areas, it may be due to simple correlations between them, so it is not a high-order interaction. Perhaps it is a matter of language, or about the expectations that the word 'synergy' evokes, so a clarification about this issue is needed. Moreover, as the rest of the work is based on these 'pair-wise' redundancy and synergy matrices, it becomes a significative issue.
Reviewer #3 (Public Review):
The work proposes a model of neural information processing based on a 'synergistic global workspace,' which processes information in three principal steps: a gatekeeping step (information gathering), an information integration step, and finally, a broadcasting step. The authors determined the synergistic global workspace based on previous work and extended the role of its elements using 100 fMRI recordings of the resting state of healthy participants of the HCP. The authors then applied network analysis and two different measures of information integration to examine changes in reduced states of consciousness (such as anesthesia and after-coma disorders of consciousness). They provided an interpretation of the results in terms of the proposed model of brain information processing, which could be helpful to be implemented in other states of consciousness and related to perturbative approaches. Overall, I found the manuscript to be well-organized, and the results are interesting and could be informative for a broad range of literature, suggesting interesting new ideas for the field to explore. However, there are some points that the authors could clarify to strengthen the paper. Key points include:
1. The work strongly relies on the identification of the regions belonging to the synergistic global workspace, which was primarily proposed and computed in a previous paper by the authors. It would be great if this computation could be included in a more explicit way in this manuscript to make it self-contained. Maybe include some table or figure being explicit in the Gradient of redundancy-to-synergy relative importance results and procedure.
2. It would be beneficial if the authors could provide further explanation regarding the differences in the procedure for selecting the workspace and its role within the proposed architecture. For instance, why does one case uses the strength of the nodes while the other case uses the participation coefficient? It would be interesting to explore what would happen if the workspace was defined directly using the participation coefficient instead of the strength. Additionally, what impact would it have on the procedure if a different selection of modules was used? For example, instead of using the RSN, other criteria, such as modularity algorithms, PCA, Hidden Markov Models, Variational Autoencoders, etc., could be considered. The main point of my question is that, probably, the RSN are quite redundant networks and other methods, as PCA generates independent networks. It would be helpful if the authors could offer some comments on their intuition regarding these points without necessarily requiring additional computations.
3. The authors acknowledged the potential relevance of perturbative approaches in terms of PCI and quantification of consciousness. It would be valuable if the authors could also discuss perturbative approaches in relation to inducing transitions between brain states. In other words, since the authors investigate disorders of consciousness where interventions could provide insights into treatment, as suggested by computational and experimental works, it would be interesting to explore the relationship between the synergistic workspace and its modifications from this perspective as well.