Nuclear bodies protect phase separated proteins from degradation in stressed proteome

  1. Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
  2. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
  3. Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
  4. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Qiang Cui
    Boston University, Boston, United States of America
  • Senior Editor
    Qiang Cui
    Boston University, Boston, United States of America

Reviewer #1 (Public Review):

This manuscript sets out to implement a multi-stage fluorescence imaging essay to test two working models in understanding the folding states of RNA-binding proteins (RBPs) in stress-induced nuclear bodies. In conjunction with live-cell fluorescence lifetime imaging, the authors revealed and conformed a previously unclear phenomenon that the RBPs investigated in this work initially enter the nuclear bodies in native state in transient stress and then begin to misfold after prolonged stress. Comparing to conventional methods, the imaging strategy reported in this work is unique, comprehensive, and effective in surveying all three-stages (native, soluble oligomer, aggregates) of folding states for RBPs in one shot. Using this strategy, the authors then found that the heat shock protein 70 may protects RBPs from being degraded under stress. The manuscript is very well-written.

Reviewer #2 (Public Review):

The authors combine the use of fluorogenic tools with fluorescence bioimaging to visualize how changes in the folding states of the RBPs TDP-43, FUS and TAF15 affect their subcellular localization and recruitment inside nuclear bodies, as well as protein fate. While the development of SNAP-tag substrates coupled with confocal microscopy in living cells (including FLIM) to monitor changes in protein folding states represents an important conceptual and technical advance for the field, I am not convinced that the authors fully achieved their aim. The authors cannot conclude on protein fate only based on the experiments performed here. Showing a correlation between a decrease in TDP-43 levels upon Hsp70 inhibition and colocalization at nuclear bodies with Hsp70 and DNAJA2 is not supporting their conclusion about protein degradation. A number of additional control experiments are needed to support their claims.

Yet, the optimization of these methods has unlimited potential since it may provide new ways to visualize and monitor a large variety of fundamental intracellular processes, including protein aggregation and fate.

Reviewer #3 (Public Review):

This manuscript presents a novel fluorescence toolkit designed for investigating the folding states of RNA-binding proteins (RBPs) and their association with molecular chaperones during liquid-liquid phase separation (LLPS) in the formation of nuclear bodies under stress. The strategy is to use SNAP-tag technology including cell lines stably expressing three model proteins fused with SNAP tag and a series of environmentally sensitive fluorophores that can selectively label on the SNAP proteins. The changes in the microenvironment such as microviscosity and micropolarity can be well characterized by these fluorophores to reflect the conformational states of the RBPs.

The strength of this method is that the SNAP protein is smaller than classic fluorescent proteins like GFP and thus its impact on the conformation and behavior of the targeted proteins is much smaller. The experiment is carefully designed and well thought-out. Overall, this work is of very high quality.

This method can thus be adapted by other protein systems to study the LLPS process and thus I believe it will be of great interest to cell biologists and biophysicists.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation