Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorToby AllenRMIT University, Melbourne, Australia
- Senior EditorMerritt MadukeStanford University, Stanford, United States of America
Reviewer #1 (Public Review):
This manuscript employs a string method with swarms of trajectories to extract a free energy map of KcsA channel inactivation and its model dependence. The approach connects X-ray structures for closed, partially and fully open, and inactivated KcsA through optimisation of a string defined in a collective variable space consisting of distances involving gate size, cavity-filter and filter pinching (as defined in the proposed X-ray structure for an inactivated state). The final trajectory includes pore opening and filter collapse with water penetration behind the filter, via different intermediates depending on the force field. The authors propose a role for residue L81 in controlling water entry in the final stage of this process. The results suggest that KcsA more easily inactivates with the Charmm force field, with lower barrier and direct passage from a partially open state, whereas the pathway for Amber involves transition first to a fully open state with higher barrier, despite not being the dominant open state seen experimentally under activating conditions. The results also suggest that PG lipids help activate the channel within the Amber force field, consistent with experimental evidence. The work represents large-scale advanced MD simulation. Some questions remain, however, such as if the CV space chosen is sufficient to capture all possible slow coordinates in the inactivation process, and how the resultant free energy surfaces may potentially depend on the end structures and initial pulling procedure.
Collective variable choice:
The explanation for the choice of CVs on page 5 is not sufficient to understand the process and its likely success. How were the most important and unimportant CVs identified exactly? Table 2 on page 19 shows only gate distances, cavity-filter distances and a single variable related to filter structure itself (77 CA - 77 CA) representing a pinch. Is that pinching really the only slow variable associated with inactivation changes in the filter? Why are there no variables, say for carbonyl flipping, E71 or D80 movements or even for ion and water occupancy (although water may be sampled with control of other interactions, such as involving L81)? I understand that the X-ray structure is the one source of information used to define an inactivated structure and is one with just a pinch and no complete carbonyl flipping away from the pore, as has been identified in past studies and discussed as being involved by the authors on page 14. Key changes like carbonyl flipping surely are part of the story and may be slow variables. At the very least, if not part of the CV space, could be analysed.
On page 10 the authors discuss possible differences in Amber and Charmm involving the extent to which the 4 subunits change in respect to the L81-W67 water pathway and W67-D80 hydrogen bond, arguing the different results for force field could be to do with different numbers of subunits doing different things. If I understand, the chosen CVs are all tetramer-based distances (including across subunits) and not subunit-based CVs, so that random and incomplete changes may occur to subunits for a given point in CV space. There is thus potential for the string to converge on a local minimum pathway with partial changes to its interactions within and between subunits, and may not be a unique global solution. Can the authors please explain whether or not this is possible and what analysis has been done to check it?
X-ray endpoints and initial pathway:
The string was created from a pulling/steered MD between existing X-ray structures for the closed (5VKH), partially open (3FB5), fully open (5VK6) and finally inactivated (5VKE) states. The authors write on page 12 that "The block of conduction during inactivation appears to result from pinching at the selectivity filter...", but given the end point was forced to be the X-ray structure with pinching, wasn't this outcome predetermined? This raises a significant point of how much has choice of endpoints predetermined the final states of the string? i.e. How much is an end state actually allowed to draft away from the initial Xray structure. Was a bead placed at the very endpoint and allowed to update via swarms, or was it fixed and all beads just interpolate between those fixed end states? The reason this is important is that it is plausible the inactivated crystal structure with pinching but not other changes (such as complete V76 carbonyl flipping or outer filter splaying), may not be the actual free energy minimum structure for that state and that force field.
Another obvious concern is the possible reliance on the initial pulling procedure used before string optimisation began. Fig.2 Supp 1 shows generally that the Amber path stayed pretty close to the initial steered MD path, whereas Charmm drifted downward away from that path. One could justifiably ask, if a very different initial path was chosen, might different local minimum pathways result, including Amber sampling a path like Charmm? How does one test whether or not the final path has not been trapped in some local trough of free energy? e.g. Imagine starting the Amber string using an initial path like the more diagonal Charmm-like path, or even a more extreme unphysiological one, such as a steered trajectory that initially inactivates before opening the gate. Would the final results be the same? I appreciate the simulations are very expensive and such trials may not be possible, but what evidence is there that the final path has not been trapped away from the global minimum?
One test offered by the authors is a set of unbiased MD simulations launched from points on the string. The authors ran 200ns simulations and write on page 5 that "These simulations have the expected stability based on their starting values. This is a good quality test to check the correct estimation of the general features of the free energy surface". While this sounds reasonable, 200ns MD may only be sufficient to begin to explore locally within the solved free energy trough, much like the swarms in the iterations were able to do. My own examination of Fig2 Supp 5 is that some of these simulations linger around the expected states and some drift away within the general trough of sampling, which is a good sign. What those 200ns simulations may not be able to do is escape that trough and see evidence of other possible solutions, beyond what was sampled with the string that was tied to Xray endpoints and trapped in the solution pathway that was already formed after 100-300 iterations. Overall, the string involved 800 iterations of 10ps swarms (80ns around each bead; albeit 32 trajectories in parallel), allowing good local sampling around the beads in the free energy trough, but in terms of ability to diffuse away from that point, only being comparable in contiguous trajectory time to the unbiased MD tests. It therefore would have been interesting to see if longer simulations remain in this trough; though I understand the challenges in running so much MD. Such simulations may, however, lead to exploration beyond what was seen in the string solutions.
Force field effects and origin:
Regarding the effect of the chosen force field, the authors state that "Given that our simulations were conducted under activating conditions, we had expected the open states to be more populated than the closed ones. Simulations carried out at higher pH may be able to resolve this inconsistency". Also running at high pH would be a nice thing to do to prove the method is in fact sensitive to conditions to see a shift in the distribution of states. But the question is why were open states not more occupied under low pH and 50mM K+? From my analysis of the figures, the results show that the Charmm force field tends to allow for opening of the channel somewhat (at least with similar free energy for partially and fully open to closed) whereas Amber tends to close the channel more (with more uphill energy as the channel opens than Charmm; Fig 2). i.e. at low pH and 50 K+, isn't the Amber model incorrectly reporting fairly strong bias against opening? Moreover, regarding the free energy of the inactivated state itself, why should we not expect equilibrated channels under activating conditions to eventually fall into an inactivated state, in which case we should expect low free energy of that state (as found with Charmm and not Amber in Fig2), but with a slow rate. While much discussion in the manuscript appears to discuss limitations in Charmm (although on page 12 discussion leans either way), these factors may seem to favour Charmm over Amber.
On page 12 the authors explain the possible causes for force field dependence, although this seems limited to ion interactions, glutamate charges and dihedrals. But it would be nice to get a bit more insight into what terms may have influenced the pathway, in particular involving interactions between TM2 and the base of the selectivity filter and hydration behind the filter. Regarding ion interactions, is there a good reason to believe ions are key to the difference seen? i.e. How were ions involved differently in the state transitions involving Amber and Charmm? The authors have noted a role for ion-carbonyl interactions. It is important that the authors explain which is the two competing models has been used and why. i.e. Off-the-shelf Charmm36 force field includes strong K+-backbone carbonyl interaction, previously seen to promote high ion occupancy, similar to Amber, whereas Lennard-Jones parameters modified to match N-methyl-acetamide and water partitioning (such as early Berneche, Noskov and Roux work) reduce ion occupancy and increase water content inside the filter.
Reviewer #2 (Public Review):
The authors describe a computational study into the energetics of KcsA inactivation. Using enhanced sampling, a converged free energy landscape of the inactivation process is achieved in two modern molecular mechanics force fields. The obtained profiles confirm the literature finding of too rapid inactivation, in particular in simulations using the CHARMM force field. Interestingly, it is found that selectivity filter collapse does not gradually follow opening of the inner gate, but proceeds rather switch-like. A key role for residue L81 is proposed as opening gateway in this process.
The study is impressive and interesting. However, I have a number of concerns that the authors may wish to address in a revised version of the manuscript.
First, concerning a set of unbiased simulations spawned at different regions of the investigated free energy landscapes, the authors write: "These simulations have the expected stability based on their starting values".
Fig 2.c shows a rather smooth downhill slope in the free energy curve towards the closed state for AMBER , so wouldn't the expected behavior in that case be that all unbiased trajectories end up in the closed state, or at least travel a substantial amount in that direction? However, that is not observed. This should be further investigated.
Second, "This suggests that stabilization of the partially open state by the removal of bound lipids can explain the increase in open probability" is an odd statement, as "stabilization of the partially open state" means almost the same as "increase in open probability".
The statement "both force fields yield inactivation barriers that are orders of magnitude lower than what is expected from electrophysiology experiments" seems inaccurate. Perhaps the authors mean "inactivation rates that are orders of magnitude lower" rather than barriers?
In addition, the assertion "The CHARMM force field, on the other hand, results in landscapes in agreement with the fact that one of the dominant states in activating conditions is the partially open state, as revealed by a combination of ssNMR+MD." seems to hold for the AMBER force field without PG lipids rather than for CHARMM?
Together with the higher barrier towards the inactivated state as well as covering most known x-ray structures along the inactivation pathway, this would seem to point all in the direction that the studied AMBER force field provides a more faithful picture of the inactivation pathway than CHARMM. I, therefore, find the somewhat inconclusive summary as presented in Fig. 5 a bit uninformative, as it suggests that both mechanisms might be equally likely.
Overall, the study would benefit from a follow-up step to become more conclusive. This could be either in the form of the suggested L81 mutation or changing the simulation conditions to inactivating conditions such as low salt, in which case the inactivated state would be expected to become a minimum, which would provide an additional reference point for validation. Either of these would narrow down the spectrum of possible mechanisms.
Reviewer #3 (Public Review):
The computational study reported in the manuscript "Free energy landscapes of KcsA inactivation" by Pérez-Conesa and Delemotte is quite interesting and insightful.
The computations provide the first complete analysis of how the opening of the activation gate and the constriction of the selectivity filter are coupled in the KcsA channel.
The analysis is careful and is state-of-the-art. The results reveal remarkable differences between the CHARMM and AMBER force fields.
Unfortunately, the "elephant in the room" with regards to K+ channel inactivation is the significance of the dilated structures more recently obtained by Xray and EM. While it is worthwhile doing our best to really understand the constriction mechanism of KcsA, and the present manuscript does an excellent job at that, the ground has shifted and understanding finer points about KcsA constriction has become, unfortunately, not the most prominent issue in the field at the present time.
Let's discuss the current situation about the inactivation of K+ channels. The situation is fairly unsettled. The KcsA channel was the first for which some atomic structure and mechanism, centered on a constriction of the selectivity filter, were proposed. The constricted conformation really does not conduct because the filter is too narrow. More recently a few structures (Xray and EM) for channel mutants known to have more propensity to inactivate have revealed a different conformation of the filter which appears to be dilated toward the extracellular side. This is a conformation that had never been seen previously. Different "camps" co-exist in the K+ channel community about inactivation. Those who were very skeptical about the constricted conformation claim that the new dilated structures is the final truth. While the dilated structures are certainly part of the body of information that we have now, but their significance remains somewhat unclear if anything because of the fact that they are not perfectly occluded and they allow ion conduction! While it is worthwhile doing our best to really understand the constriction mechanism of KcsA, and the present manuscript does an excellent job at that, the ground has shifted and understanding finer points about KcsA constriction has become, unfortunately, not the most prominent issue in the field at the present time.