Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorSonia SenTata Institute for Genetics and Society, Bangalore, India
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
Establishing direct links between the neuronal connectivity information of connectomics datasets with circuit physiology and behavior and exciting current research area in neurobiology. Until recently, studies of aggression in Drosophila had been conducted largely in males, and many of the neurons involved in this behavior are male-specific clusters. Since the currently available fly brain connectomes come from female brains, their applicability for the study of the circuitry underlying aggressive behavior is very limited.
The authors have previously used the Janelia hemibrain connectome paired with behavior analysis to show that activating either the aIPg or pC1d cell types can induce short-term aggression in females, while activation of other PC1 clusters (a-c and e) does not. Here they expand on those findings, showing that optogenetic stimulation of aIPg neurons was sufficient to promote an aggressive internal state lasting at least 10 minutes following a 30-second activation. In addition, the authors show that while stimulation of PC1d alone is not sufficient to induce this persistent aggressive state, simultaneous activation of PC1d + PC1e is, suggesting a synergistic effect. Connectomics analysis performed in the authors' previous study had shown that PC1d and aIPg are interconnected. However, silencing pC1d neuronal activity did not reduce aIPg-evoked persistent aggression, indicating that the aggressive state did not depend on pC1d-aIPg recurrent connectivity.
The conclusions are well supported by the data, and the results presented in this manuscript represent an important contribution to our understanding of the neuronal circuitry underlying female aggression.
Reviewer #2 (Public Review):
The mechanisms that mediate female aggression remain poorly understood. Chiu, Schretter, and colleagues, employed circuit dissection techniques to tease apart the specific roles of particular doublesex and fruitless expressing neurons in the fly Drosophila in generating a persistent aggressive state. They find that activating the fruitless positive alPg neurons, generated an aggressive state that persisted for >10min after the stimulation ended. Similarly, activating the doublesex positive pC1de neurons also generated a persistent state. Activating pC1d or pC1e individually did not induce a persistent state. Interestingly, while neural activation of alPGs and pC1d+e neurons induced persistent behavioural states it did not induce persistent activity in the neurons being activated.
The conclusions of this paper are well supported by the data, there were only a few points where clarification might help:
Figure 3 is a little confusing. This is a circuit behavioural epistasis experiment where the authors activate alPg with CsChrimson while inhibiting pC1d with Kir2.1. In Fig. 2 flies were separated for 10 min following stimulation which allowed for identification of a persistent state. However, in Fig 3 it appears as if flies were allowed to freely interact during and immediately post-stimulation. It is unclear why flies were not separated as in Fig. 2, which makes it difficult to compare the two results. Some discussion of this point would help. Also, from the rasters it appears as if inhibition of pC1d reduced aggression induced by alPg during the stimulation period. Is this true?
pC1e neurons also have recurrent connectivity with alPg neurons. It might help to also discuss the potential role of this arm of the microcircuit.
Reviewer #3 (Public Review):
Two studies published in 2020 independently identified the alPg, pC1d, and pC1e neurons to be involved in initiating and maintaining a state of aggression in female Drosophila. Both studies combined behavioural analyses, optogenitic manipulation of neurons, and connectomics. One of these studies proposed that the extensive interconnections seen between the alPg and pC1d+e neurons might represent a recurrent motif known to support persistent behvioural states in other systems. In this manuscript, the authors test this idea and report that their data do not support it. Specifically, they report that alPg or pC1d+e (but not pC1d alone) can initiate a persistent state of aggression. But they find that the persistent aggressive state is maintained even when the pC1d neurons are inactivated. Finally, they show that neither of these neurons themselves sustains neuronal activity upon stimulation, nor do either of them induce a persistent activity in the other. Together, their data suggest that the recurrent connection between alPg and pC1d is not what supports the persistent state. The data underlying these claims are convincing. A possibility to explore before ruling out recurrent motifs (at this circuit level) in maintaining aggression is that the connections between alPg and pC1e can compensate for the loss of pC1e. Overall, the study is important and will be of interest to those who study the circuit basis of persistent behavioural states, but also to neuroscientists in general.