Abstract
We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 48 human tissues. voyAGEr offers a visualization and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, for more than 700 individuals.
voyAGEr reveals transcriptomic signatures of the known asynchronous aging between tissues, allowing the observation of tissue-specific age-periods of major transcriptional changes, that likely reflect so-called digital aging, associated with alterations in different biological pathways, cellular composition, and disease conditions.
voyAGEr therefore supports researchers with no expertise in bioinformatics in elaborating, testing and refining their hypotheses on the molecular nature of human aging and its association with pathologies, thereby also assisting in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/voyAGEr
Introduction
The aging-associated progressive loss of proper tissue homeostasis maintenance makes age a prevalent risk factor for many human pathologies, including cancer, neurodegenerative and cardiovascular diseases 1–3. A better comprehension of the molecular mechanisms of human aging is thus required for the development and effective application of therapies targeting its associated morbidities.
Dynamic transcriptional alterations accompany most physiological processes occurring in human tissues 4. Transcriptomic analyses of tissue samples can thus provide snapshots of cellular states therein and insights into how their modifications over time impact tissue physiology. A small proportion of transcripts has indeed been shown to vary with age in tissue-5 and sex-specific 6–11 manners. Such variations reflect deregulations of gene expression that underlie cellular disfunctions 5.
Many studies analyzed the age-related changes in gene expression in rodent tissues 12–18, emphasizing the role in aging of genes related to inflammatory responses, cell cycle or the electron transport chain. However, while it is possible to monitor the modifications in gene expression over time in those species by sequencing transcriptomes of organs of littermates at different ages, as a close surrogate of longitudinality, such studies cannot be conducted in humans for obvious ethical reasons. Indeed, most studies aimed at profiling aging-related gene expression changes in human tissues focused on a single tissue (e.g. muscle 19–21, kidney 22, brain 23–27, skin 28,29, blood 30,31, liver 32, retina 33) and/or limited to a comparison between young and old individuals 20,21,28,32,33, failing to fully capture the changes of tissue-specific gene expression landscape along aging 5. A few studies were nonetheless led on more than one tissue in humans, from post-mortem samples 34,35 and biopsies 36,37, and in mice 18,36 and rats 38. The age-related transcriptional profiles derived therein, either from regression 18,34,35,37 or comparison between age groups 36,38, highlight an asynchronous aging of tissues (discussed in 39), with some of them more affected by age-related gene expression changes associated with biological mechanisms known to be impacted by aging such as mitochondrial activity or metabolic homeostasis. In particular, tissue-specific periods of major transcriptional changes in the fifth and eighth decades of human lifespan have been revealed 34, reflecting the so-called digital aging 39 and consistently with what is observed in mice 17,18. Furthermore, despite outlining the tissue specificity of the transcriptomic signatures of human aging, some synchronization was found between tissues like lung, heart and whole blood, which exhibit a co-aging pattern 35. Nevertheless, as each study followed its own specific procedures, from sample collection to data processing, results from their analyses are hardly comparable across studies.
Processed data from those studies have not been made easily accessible and interpretable to researchers lacking computational proficiency but aiming to use them to test their novel hypotheses. To fill this void, we have developed voyAGEr, a web application providing flexible visualization of comprehensive functional analyses of gene expression alterations occurring in 48 human tissues with age in each sex. We leverage the large RNA-seq dataset from the Genotype-Tissue Expression (GTEx) project 40, encompassing post-mortem tissue samples from hundreds of donors aged from 20 to 70 years, with a pipeline for gene expression profiling with an optimized temporal resolution. voyAGEr allows to investigate aging from two perspectives: (i) gene-centric – how each gene’s tissue-specific expression progresses with age; (ii) tissue-centric – how tissue-specific transcriptomes change with age. Additionally, voyAGEr enables the examination of modules of co-expressed genes altered with age in 4 tissues (brain, skeletal muscle, heart (left ventricle), whole blood), namely their enrichment in specific cell types, biological pathways, and association with diseases. We therefore expect voyAGEr to become a valuable support tool for researchers aiming to uncover the molecular mechanisms underlying human aging. Moreover, being open-source, voyAGEr can be adapted by fellow developers to be used with alternative datasets (e.g. from other species) or to incorporate other specific functionalities. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/voyAGEr
Results
voyAGEr’s interactive exploration of tissue-specific gene expression landscapes in aging is based on the sequential fitting of linear models (v. Materials and Methods) to estimate, for each gene in each tissue (Figure 1):
the Age effect, i.e., how the age-associated changes in gene expression evolve with age itself;
the Sex effect, i.e., how the differences in gene expression between sexes evolve with age;
the Age&Sex interaction effect, i.e., how the Sex effect changes with age, equivalent to how the Age effect differs between sexes; in other words, how the age-associated changes in differences in gene expression between sexes (or how the differences between sexes of age-associated changes in gene expression) evolve with age.
We named our approach Shifting Age Range Pipeline for Linear Modelling (ShARP-LM). Briefly, this method carries out differential gene expression analyses (with gene expression as a function of the donors’ Age, Sex and Age&Sex interaction) in age windows spanning 16 years centered in consecutive years of age. By considering the percentage of genes differentially expressed in each age range, we highlight age periods of major tissue-specific transcriptomic alterations (Figure 1).
Gene-centric analyses of human tissue-specific expression changes across age
The progression of tissue-specific expression of a specific gene across age can be examined in votAGEr’s Gene tab. By entering its symbol in the Gene selector, the user has access to graphical summaries of the gene’s tissue-specific expression (sub-tab Profile) (Figure 2A) and of the significance age-related changes in its expression due to the Age, Sex, and Age&Sex (sub-tab Alteration) (Figure 2B) across age. Results can be displayed in a heatmap for all tissues or in a scatter plot for a chosen individual tissue. When the gene is studied in a single tissue, the user can graphically and statistically profile the association of the donors’ sex and reported conditions (e.g., history of heart attack or pneumonia) with the gene’s expression profile (Figure 2C). A table summarizing the donors’ metadata is also shown (Figure 2C). The user can interactively select donors of interest on the scatter plot and further examine their information in the automatically subsetted table.
Cellular senescence, a stress-induced cell cycle arrest limiting proliferation of potentially oncogenic cells but progressively creating an inflammatory environment in tissues as they age, is an example of a process whose molecular mechanisms are of particular interest to aging researchers 41,42. CDKN2A, encoding cell cycle regulatory protein p16INK4A that accumulates in senescent cells 43,44, has its expression increased with age in the vast majority of tissues profiled (Supplementary Figure 1A). Similarly, reduced levels of proliferation markers, such as PCNA 45 and MKI67 46, can be studied as putative markers of aging of certain tissues. These genes have their expression significantly altered with age in transverse colon and display a similar expression profile (decreasing from 20 to 30 years old (y.o.), constant until 55 y.o. and decreasing in older ages) (Figure 2C and Supplementary Figure 1B). However, these trends appear to vary according to the donor’s history of pneumonia (Supplementary Figure 1B), illustrating voyAGEr’s use in helping to find associations between gene expression and age-related diseases.
On a different note, sex biases have been reported in for the expression of SALL1 and KAL1 in adipose tissue and lung, respectively 10. voyAGEr allows to not only recapitulate those observations but also estimate that these differences occur mostly in older ages (Supplementary Figure 2).
Tissue-specific assessment of gene expression changes across age
Peaks
The landscape of global tissue-specific gene expression alteration across age can be examined in voyAGEr’s Tissue main tab. A heatmap displaying, for all tissues, the statistical significance over age (v. Materials and Methods) of the proportion of genes altered with Age, Sex or Age&Sex interaction (depending on the user’s interest) is initially shown (Figure 3A), illustrating the aforementioned asynchronous aging of tissues observed for humans and rodents 18,32–36,39.
The user can then spot the age periods with the most significant gene expression alterations in a selected tissue (Figure 3B a), the so-called Peaks naming the sub-tab, and identify the associated differentially expressed genes (Figure 3B b). The user can also plot the expression of a given gene of interest across age together with the significance of its expression modification with Age, Sex or Age&Sex (Figure 3B c).
As an example, the transverse colon appears to go through three main periods of transcriptional changes: one minor at around 27 y.o. (∼5 % of genes differentially expressed (DEG)) and two major at around 55 y.o. (∼21 % DEG) and 62 y.o. (∼40 % DEG) (Figure 3B a). Interestingly, some of the genes most differentially expressed in the second peak at ∼55 y.o. appear to have their expression modified only at this precise age period (e.g. E2F1, KIF24, TRMU, CRIM1). Similarly, genes such as HOXA-AS3, NFYA, ZDHHC1, and MYL6B (Figure 3B b), are specifically differentially expressed in the third peak at ∼62 y.o. (Figure 3B c). This particularity is also found for the minor first peak. It therefore seems that different sets of genes drive the periods of major transcriptional changes, which begs assessing if they reflect the activation of distinct biological processes.
Enrichment
The user can thus explore the biological functions of the set of genes underlying each peak of transcriptomic changes by assessing their enrichment in manually curated pathways from the Reactome database 47. voyAGEr performs Gene Set Enrichment Analysis (GSEA) 48 and the user can visualize heatmaps displaying the evolution over age of the resulting normalized enrichment score (NES, reflecting the degree to which a pathway is over- or under-represented in a subset of genes) for the given tissue, effect (Age, Sex or Age&Sex) and all or some user-specified Reactome pathways (Figure 4A). To reduce redundancy and facilitate the understanding of their biological relevance, we clustered those pathways into families that also include Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 49 and Gene Ontology (GO) Biological Processes of level 3 50. Briefly, we clustered gene sets from the 3 sources based on the overlap of their genes (v. Materials and Methods), thereby creating families of highly functionally related pathways. Taking advantage of the complementary and distinct terminology in Reactome, KEGG and GO, the user can interpret each family’s broad biological function by looking at the word cloud of its most prevalent terms, still being able to browse the list of its associated pathways (Figure 4A). The peaks of transcriptomic changes can also be examined for enrichment in a user-provided gene set (Figure 4B). To illustrate this procedure, we inspected the aforementioned three aging peaks of the transverse colon for significant enrichment in genes retrieved from Senequest 42 whose link with senescence is supported by at least 4 sources, having observed it in the first (∼27 y.o.) and second (∼55 y.o.) peaks (Figure 4B).
Modules of co-expressed genes
voyAGEr also allows functional analyses of modules of co-expressed genes (i.e. genes with highly correlated expression across samples, defined by weighted correlation network analysis 51) altered with age. Genes in the same module are likely to be coregulated and share biological functions or associations with phenotypical or pathological traits 52. Those modules may also act as markers of core transcriptional features of cellular activity and identity 53.
Concretely, voyAGEr enables the user to visualize how the expression of modules of genes that are associated with a specific cell type or disease progresses over age in a specific tissue. In the example of Figure 5B, the “midnight blue” module, gathering 11 genes co-expressed in the heart’s left ventricle, shows significant enrichment in fibroblast markers, namely collagens. This module’s expression in the left ventricle is steady until ∼55 years of age and appears to increase later in life, perhaps reflecting the known age-related changes of the collagen network of the human myocardium 54.
After selecting one tissue of interest, the user has, for each module, access to four levels of information: (i) Expression: its eigengene expression progression over age; (ii) Cell types: its enrichment in specific cell types, based on marker genes found literature, (iii) Pathways: its enrichment in Reactome pathways; (iv) Diseases: its enrichment in disease markers, based on gene-disease associations from DisGeNET 55,56, calculated with both the DOSE package 57 and with Fisher’s tests (Figure 5C).
By default, for each tissue, results are displayed in the form of heatmaps showing how all modules evolve with age (Figure 5A). The user has also the possibility to select a module of interest and see its eigengene progression over age in a scatter plot (Figure 5B), lists of its association with diseases and pathways ordered by significance, and a TreeMap for its cell type enrichment (Figure 5B). Like in the Gene tab, the user can separate donors based on their sex and previous condition in the scatter plot of the eigengene expression progression. When a significant enrichment results from a Fisher’s test, the associated contingency table is shown for its clearer interpretation.
Discussion
voyAGEr provides a framework to examine the progression over age of gene expression in a broad range of human tissues, thereby being a novel valuable resource for the aging research community. In particular, it helps to identify tissue-specific age periods of major transcriptomic alterations. The results of our analyses show the complexity of human biological aging by stressing its tissue specificity 34 and non-linear transcriptional progression throughout lifetime, consistent with previous results from both proteomic 58 and transcriptomic 28,34 analyses. By revealing and annotating the age-specific transcriptional trends in each tissue, voyAGEr aims at assisting researchers in deciphering the cellular and molecular mechanisms associated with the age-related physiological decline across the human body.
Besides, voyAGEr, to our knowledge unprecedently, scrutinizes and visually displays the tissue-specific differences in gene expression between biological sexes across age. Biological sex is an important variable in the prevalence of aging-associated diseases, as well as in their age of onset and progression 6,7,59 and tissue-specific sex-related biases in gene expression had been reported 8–11. By profiling the age distribution of those biases, voyAGEr will thus help to better understand their influence in the etiology of the sex specificities of human aging. For instance, we were able to corroborate findings on the sex-differential transcriptome of human adults by Gershoni et al. 9, with voyAGEr emphasizing its tissue-specificity and allowing to discriminate the ages at which sex-related biases appear to be more prevalent (Supplementary Figure 3).
One of the limitations of voyAGEr is that most GTEx tissue donors had health conditions and their frequency increased with age, preventing us from defining a class of healthy individuals and identifying age-associated transcriptomic changes that could be more confidently proposed to happen independently of any disease progression. On one hand, we expect the large sample sizes and the biological variability between individuals, reflected on the diversity of combinations of conditions, to mitigate major confounding effects. On the other hand, voyAGEr allows users to assess how tissue-specific gene expression trends vary according to the donors’ history of the different conditions (Supplementary Figure 1B), therefore helping to find associations between gene expression and age-related diseases.
The development of voyAGEr was accompanied by that of a pipeline, ShARP-LM, that facilitates the holistic depiction of the transcriptional landscapes of adult human tissues upon aging with a yearly age resolution. We take advantage of the comprehensiveness of the collection of transcriptomes from post-mortem human tissues from the GTEx project to make our analyses a valid surrogate of a currently undoable longitudinal study. It confers our method enough statistical robustness to mitigate the inter-individual, overcome the imbalance in the numbers of male and female samples and deal with the non-uniform distribution of the donors’ ages. Indeed, we found no confounding between the distribution of samples’ ages and the trend of gene expression progression over age in any tissue.
However, the distribution of donor’s ages does affect the statistical power of detection of transcriptional alterations and we are therefore more likely to find significant ones in age ranges that are more abundant in samples (Supplementary Figure 4). This limitation is to be overcome by the accumulation of transcriptomes of human tissues in public databases, promising a gradually increase in accuracy and age resolution with which human transcriptomic aging can be profiled. Similarly, the accumulation of single-cell transcriptomes in public databases is yielding better gene markers for a growing diversity of human cell types, increasing the usefulness of exploiting bulk transcriptomes in studying the impact of aging on the cellular composition of human tissues, for which the co-expression module approach in voyAGEr provides a proof-of-concept.
As voyAGEr is open source, it is envisaged as an ever-evolving resource, that can be adapted by researchers to accommodate the aforementioned new data and expanded to provide new functionalities (e.g. integration with perturbagen data for the inference of molecular causes of observed gene expression alterations or small molecules for therapeutic purposes 60,61).
As an in silico approach with no experimental validation for its results, voyAGEr is meant to be a discovery tool, supporting biologists of aging in the exploration of a large transcriptomic dataset, thereby generating, refining or preliminary testing hypotheses that will pave the way for subsequent experimental work. It can be an entry point for projects aiming at better understanding the tissue- and sex-specific transcriptional alterations underlying human aging, to be followed by more targeted studies focusing on the functional roles of the most promising markers identified therein in the physiology of aging. Those marker genes can contribute to the development of more robust and cross-tissue gene signatures of aging 62 and the expansion of age-related gene databases 57,63.
Moreover, the observed diverse and asynchronous changes in gene expression between tissues over the human adult life provides potentially relevant information for the design of accurate diagnostic tools and personalized therapies. On one hand, finding those changes’ association with specific disorders could have a prognostic value by enabling the identification of their onset before their clinical symptoms’ manifestation 36. On the other hand, computational screening of databases of genetic and pharmacologically induced human transcriptomic changes could help to infer their molecular causes and shed light on candidate drugs to delay their effects 60,61,64,65.
Methods
Development’s platform
Data analysis was performed in R (version 3.6.3) and the application developed with R package Shiny 66. voyAGEr’s outputs are plots and tables, generated with R packages highcharter 67 and DT 68, respectively, that can easily be downloaded in standard formats (png, jpeg, and pdf for the plots; xls and csv for the tables).
voyAGEr was deployed using Docker Compose and ShinyProxy 2.6.0 in a Linux virtual machine (64GB RAM, 16 CPU threads and 200GB SSD) running in our institutional computing cluster. The source code for voyAGEr is available at GitHub (https://github.com/nunolbmorais/voyAGEr).
Read count data pre-processing
We downloaded the matrix with the RNA-seq read counts for each gene in each GTEx v7 sample from the project’s data portal (https://www.gtexportal.org/) 40. We then pre-processed the read count data for each tissue separately. We started by filtering out the uninformative genes with very low expression across samples. For that purpose, we normalised read counts for library size, to account for the differences in sequencing depth between samples, by transforming them into counts per million (CPM) with function cpm from R package edgeR 69. Only genes with at least 1 CPM in at least 40% of the samples were kept for analysis (the number of genes analysed for each tissue can be found in Supplementary Table 1). Read counts for those kept genes were used to calculate normalization factors to scale the raw library sizes, using function calcNormFactors from edgeR that implements the trimmed mean of M-values 70, and normalised accordingly and subsequently log-transformed with the voom function 71 from package limma 72, which also estimates mean-variance relationships to be used in linear modelling (v. ShARP-LM below). Normalized gene expression was thereby ready to be analyzed and featured in the plots in log2 of CPM (logCPM), this log-transformation yielding more manageable nearly normal distributions.
Finally, from the 53 tissues available from GTEx v7, we discarded five (renal cortex, fallopian tube, bladder, ectocervix, endocervix, chronic myeloid leukemia cell line) due to a low (<50) number of respective samples.
ShARP-LM
To model the changes in gene expression with age, we developed the Shifting Age Range Pipeline for Linear Modelling (ShARP-LM). For each tissue, we fitted linear models to the gene expression of samples from donors with ages within windows with a range of 16 years shifted through consecutive years of age (i.e. in a sliding window with window size = 16 and step size = 1 years of age). As samples at the ends of the dataset’s age range would be thereby involved in fewer linear models, we made the window size gradually increase from 11 to 16 years when starting from the “youngest” samples and decrease from 16 to 11 years when reaching the “oldest” (Supplementary Figure 5).
Function lm from limma was used to fit the following linear model for gene expression (GE):
For each gene, α, β and χ are the coefficients to be estimated for the respective hypothesized effects and ε is the residual. For each sample, Age in years and Sex in binary were centered and Age&Sex interaction given by their product.
For each gene in each model (i.e., each age window in each tissue), we retrieved the t-statistics of differential expression associated with the three variables and their respective p-values. We considered the average age of the samples’ donors within the age window as the representative age of the observed expression changes.
In summary, for a given tissue and variable (Age, Sex and Age&Sex), ShARP-LM yields t-statistics and p-values over age for all genes, reflecting the magnitude and significance of the changes in their expression throughout adult life.
Gene-centric visualization of tissue-specific expression changes across age
For visualization purposes, the trend of each gene’s expression progression over age in each tissue was derived through Local Polynomial Regression Fitting, using R function loess on logCPM values (Figures 1, 2C, 3B). For summarizing in a heatmap a given gene’s expression across age in multiple tissues (Figure 2A) or the expression of several genes across age in a given tissue, each gene’s regression values are centered, but not scaled, with R function scale.
For summarizing in a heatmap the significance of a given gene’s expression changes over age in multiple tissues (Figure 2B), cubic smoothing splines are fitted to -log10(p), p being the t-statistic’s p-value, with R function smooth.spline.
Tissue-specific quantification of global transcriptomic alterations across age
To assess the global transcriptomic impact of each of the three modelled effects in each tissue across age, we then analyzed the progression over age (i.e. over consecutive linear models) of the percentage of genes whose expression is significantly altered (t-statistic’s p-value ≤ 0.01) by each effect (Figure 3B). To evaluate the significance of each percentage and see if high ones can be confidently associated with major transcriptomic alterations, we controlled for their false discovery rate (FDR) by randomly permuting the samples’ ages within each age window one million times and performing ShARP-LM on each randomised dataset. We were then able to associate an FDR to each percentage of differentially expressed genes by comparing it with the distribution of those randomly generated (Figure 3B).
Gene Set Enrichment Analysis (GSEA)
For each Peak of significant gene expression modifications, we performed GSEA 48 on the ordered (from the most positive to the most negative) t-statistics of differential expression for the respective tissue and age, using R package fgsea 73 and the Reactome database 47. The resulting normalized enrichment score (NES) for each pathway was used in subsequent analyses as a metric of its over- or down-representation in the Peak.
Families of pathways
To reduce pathways’ redundancy and facilitate the assessment of their biological relevance in results’ interpretation, we created an unifying representation of pathways from Reactome 47 and KEGG 49, and level 3 Biological Processes from GO 50, by adapting a published pathway clustering approach 74 to integrate them into families.
The approach relies on the definition of a hierarchy of pathways based on the numbers of genes they have in common. For each two pathways Pi and Pj, respectively containing sets of genes Gi and Gj, we computed their overlap index 74, defined as following:
Where |Gi| is the number of genes in set Gi and |Gi⋂Gj| is the number of genes in common between Gi and Gj. Oiij = 1 would therefore indicate that Pi and Pj are identical in gene composition or that one is a subset of the other. On the contrary, Oiij = 0 would mean that Pi and Pj have no genes in common. To ease the computational work, we removed from the analysis pathways that are subsets of larger pathways (i.e. each pathway whose genes are all present in another pathway).
From the Oiij matrix, from which each row is a vector with the gene overlaps of pathway I with each of all the pathways, we computed the matrix of Pearson’s correlation between all pathways’ overlap indexes with R function cor. That matrix was finally transformed into Euclidean distances with R function dist, allowing for pathways to be subsequently clustered with the complete linkage method with R function hclust. The final dendrogram was empirically cut in 10 clusters (Supplementary Figure 6). One of them, not including Reactome pathways, was dismissed from the analysis. Pathways that initially excluded from the computation for being subsets of others were finally added to the clusters of their respective parent pathways. Each daughter pathway with more than one parent was assigned to the cluster of the parent with the smallest number of genes, thereby maximizing the daughter-parent similarity. The data.table R package, for fast handling of large matrices, was used in this analysis 75.
Gene co-expression modules
Gene co-expression modules were defined with R package WGCNA 51. For each tissue, genes were first filtered based on the variance of their expression across samples (variable A), with lowly variant ones being discarded from subsequent co-expression analyses. Then, an adjacency matrix was computed with the adjacency function. To this end, we first computed the matrix of Pearson’s correlation between all selected genes’ expressions and then raised all of its values to a power β (soft thresholding) to emphasise stronger correlations. The soft threshold was determined with the pickSoftThreshold function. The thereby generated matrix (|correlation|β) was then converted into a dissimilarity matrix based on the topological overlap measure, determined with function TOMsimilarity. Finally, gene co-expression modules were identified with a dynamic tree-cutting algorithm, implemented with the cutreeDynamic function, that adjusts the minimal number of genes per module (variable B) and the height at which the tree is cut (variable C).
The definition of those modules of co-expressed genes is highly dependent on the three variables A, B, and C. Thus, we comprehensively tested combinations of them and defined as optimal those that maximized the modules’ enrichment in known markers for specific cell types, an approach similar to that reported to have been successfully applied in the revelation of the core transcriptional features of cell types in the human central nervous system 53. In particular, we used human and murine cell type gene signatures, derived from single cell transcriptomic analyses, for brain (cortex) 76–79, skeletal muscle 80–82, left cardiac ventricle 82–84, and whole blood 82,85,86. Finally, the 40%, 30%, 35%, and 40% most variant genes, the tree cut at a height of 0.96, and a minimum number of 20, 18, 11, and 16, were respectively chosen for the three variables in those four tissues.
Each module is then represented by a set of genes and an eigengene, the first principal component obtained by singular-value decomposition of the expression of the module’s genes and representative of its own expression profile.
The enrichment of modules in cell types, Reactome pathways and diseases from DisGeNET 55,56was quantified with Fisher’s tests. Disease enrichment was also calculated using the DOSE package 57.
Data availability
Processed GTEx v7 RNA-seq data (read count tables) were downloaded from the project’s data portal (https://www.gtexportal.org/). Donor metadata were obtained from dbGaP - database of Genotypes and Phenotypes (Accession phs000424.v7.p2; project ID 13661). voyAGEr’s output tables be directly downloaded in standard xls and csv formats.
Acknowledgements
We thank iMM colleagues Joana Neves and Luísa Lopes, as well as all members from the Disease Transcriptomics Lab, for providing valuable feedback on the manuscript.
Funding
This work was supported by European Molecular Biology Organization (EMBO Installation Grant 3057), FCT - Fundação para a Ciência e a Tecnologia I.P. (FCT Investigator Starting Grant IF/00595/2014, CEEC Individual Assistant Researcher contract CEECIND/00436/2018, PhD Studentship SFRH/BD/131312/2017, project LA/P/0082/2020), European Union (EU) Horizon 2020 Research and Innovation Programme (RiboMed 857119), and GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 – Operational Programme for Competitiveness and Internationalization (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by FCT - Fundação para a Ciência e a Tecnologia.
Conflict of Interest statement
The authors declare no conflict of interest.
Supplementary Figures and Tables
References
- 1.Aging, Cellular Senescence, and CancerAnnu. Rev. Physiol 75:685–705
- 2.Ageing as a Risk Factor for DiseaseCurr. Biol 22:R741–R752
- 3.Ageing, neurodegeneration and brain rejuvenationNature 539:180–186
- 4.The Hallmarks of AgingCell 153:1194–1217
- 5.Transcriptional Signatures of AgingJ. Mol. Biol 429:2427–2437
- 6.Sex-Specific Gene Expression and Life Span RegulationTrends Endocrinol. Metab 28:735–747
- 7.Sex Differences in LifespanCell Metab 23:1022–1033
- 8.The human transcriptome across tissues and individualsScience (80- 348:660–665
- 9.The landscape of sex-differential transcriptome and its consequent selection in human adultsBMC Biol 15
- 10.Tissue-specific sex differences in human gene expressionHum. Mol. Genet 28:2976–2986
- 11.Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in HumansFront. Genet 7
- 12.AGEMAP: A Gene Expression Database for Aging in MicePLoS Genet 3
- 13.Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of agingGenome Res 29:2088–2103
- 14.Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responsesGenome Res 29:697–709
- 15.Changes in gene expression associated with aging commonly originate during juvenile growthMech. Ageing Dev 131:641–649
- 16.Age-Related Gene Expression Signature in Rats Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple TissuesCell Rep 28:3263–3273
- 17.A single-cell transcriptomic atlas characterizes ageing tissues in the mouseNature 583:590–595
- 18.Ageing hallmarks exhibit organ-specific temporal signaturesNature 583:596–602
- 19.Transcriptional profiling of aging in human muscle reveals a common aging signaturePLoS Genet
- 20.Gene expression profile of aging in human musclePhysiol. Genomics 14:149–159
- 21.Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exerciseMech. Ageing Dev 120:45–56
- 22.A Transcriptional Profile of Aging in the Human KidneyPLoS Biol 2
- 23.Transcriptomic analysis of purified human cortical microglia reveals age-associated changesNat. Neurosci 20:1162–1171
- 24.A transcriptomic atlas of aged human microgliaNat. Commun 9
- 25.Gene expression changes in the course of normal brain aging are sexually dimorphicProc. Natl. Acad. Sci 105:15605–15610
- 26.Gene regulation and DNA damage in the ageing human brainNature 429:883–891
- 27.Temporal changes in the gene expression heterogeneity during brain development and agingSci. Rep 10
- 28.Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κBSci. Rep 6
- 29.Multi-omics network analysis reveals distinct stages in the human aging progression in epidermal tissueAging (Albany. NY) 12:12393–12409
- 30.Identification of blood biomarkers of aging by transcript profiling of whole bloodBiochem. Biophys. Res. Commun 418:313–318
- 31.Human aging is characterized by focused changes in gene expression and deregulation of alternative splicingAging Cell 10:868–878
- 32.Age-Associated Changes in Gene Expression Patterns in the LiverJ. Gastrointest. Surg 6:445–454
- 33.Microarray analysis of gene expression in the aging human retinaInvest. Ophthalmol. Vis. Sci 43:2554–60
- 34.Major aging-associated RNA expressions change at two distinct age-positionsBMC Genomics 15
- 35.Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseasesSci. Rep 5
- 36.Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderlyNat. Commun 9
- 37.Gene expression changes with age in skin, adipose tissue, blood and brainGenome Biol 14
- 38.A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stagesNat. Commun 5
- 39.Asynchronous, contagious and digital agingNat. Aging 1:29–35
- 40.The Genotype-Tissue Expression (GTEx) projectNat. Genet 45:580–585
- 41.The role of senescent cells in ageingNature 509:439–446
- 42.Cellular Senescence: Defining a Path ForwardCell 179:813–827
- 43.Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for allNat. Rev. Mol. Cell Biol 7:667–677
- 44.Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescenceOncogene 17:595–602
- 45.Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular SenescenceCell 113:703–716
- 46.Ki-67: more than a proliferation markerChromosoma 127:175–186
- 47.The Reactome pathway knowledgebaseNucleic Acids Res 42:D472–D477
- 48.Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl. Acad. Sci. U. S. A 102:15545–50
- 49.KEGG: Kyoto Encyclopedia of Genes and GenomesNucleic Acids Res 28:27–30
- 50.The Gene Ontology (GO) database and informatics resourceNucleic Acids Res 32:258–261
- 51.WGCNA: an R package for weighted correlation network analysisBMC Bioinformatics 9
- 52.Gene co-expression analysis for functional classification and gene–disease predictionsBrief. Bioinform. bbw139 https://doi.org/10.1093/bib/bbw139
- 53.Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classesNat. Neurosci 21:1171–1184
- 54.Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodellingJ. Mol. Cell. Cardiol 93:175–185
- 55.The DisGeNET knowledge platform for disease genomics: 2019 updateNucleic Acids Res https://doi.org/10.1093/nar/gkz1021
- 56.DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variantsNucleic Acids Res 45:D833–D839
- 57.The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resourceNucleic Acids Res 43:D873–D878
- 58.Undulating changes in human plasma proteome profiles across the lifespanNat. Med 25:1843–1850
- 59.The role of sex in the genomics of human complex traitsNat. Rev. Genet 20:173–190
- 60.A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 ProfilesCell 171:1437–1452
- 61.cTRAP: Identification of candidate causal perturbations from differential gene expression data
- 62.Meta-analysis of age-related gene expression profiles identifies common signatures of agingBioinformatics 25:875–881
- 63.Human Ageing Genomic Resources: new and updated databasesNucleic Acids Res 46:D1083–D1090
- 64.Gene expression-based drug repurposing to target agingAging Cell 17
- 65.Transcriptomics-Based Screening Identifies Pharmacological Inhibition of Hsp90 as a Means to Defer AgingCell Rep 27:467–480
- 66.https://shiny.rstudio.com/gallery/.
- 67.Kunst, J. highcharter: A Wrapper for the ‘Highcharts’ Library.
- 68.Yihui, X., Joe, C. & Xianying, T. DT: A Wrapper of the JavaScript Library ‘DataTables’.
- 69.edgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics 26:139–140
- 70.A scaling normalization method for differential expression analysis of RNA-seq dataGenome Biol 11
- 71.voom: precision weights unlock linear model analysis tools for RNA-seq read countsGenome Biol 15
- 72.limma powers differential expression analyses for RNA-sequencing and microarray studiesNucleic Acids Res 43
- 73.Fast gene set enrichment analysisbioRxiv 060012 https://doi.org/10.1101/060012
- 74.Integrated Pathway Clusters with Coherent Biological Themes for Target PrioritisationPLoS One 9
- 75.Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’.
- 76.Genome-wide atlas of gene expression in the adult mouse brainNature 445:168–176
- 77.Identification of a unique TGF-β–dependent molecular and functional signature in microgliaNat. Neurosci 17:131–143
- 78.A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and FunctionJ. Neurosci 28:264–278
- 79.The microglial sensome revealed by direct RNA sequencingNat. Neurosci 16:1896–1905
- 80.Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus AgingCell 180:984–1001
- 81.Single-cell transcriptional profiles in human skeletal muscleSci. Rep 10
- 82.Single-cell transcriptome profiling of an adult human cell atlas of 15 major organsGenome Biol 21
- 83.Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human HeartCell Rep 26:1934–1950
- 84.Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse HeartCell Rep 22:600–610
- 85.Cell-type specific gene expression profiles of leukocytes in human peripheral bloodBMC Genomics 7
- 86.Robust enumeration of cell subsets from tissue expression profilesNat. Methods 12:453–457
Article and author information
Author information
Version history
- Preprint posted:
- Sent for peer review:
- Reviewed Preprint version 1:
- Reviewed Preprint version 2:
- Version of Record published:
Copyright
© 2023, Schneider et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
- views
- 2,953
- downloads
- 157
- citations
- 5
Views, downloads and citations are aggregated across all versions of this paper published by eLife.