Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJörn DiedrichsenWestern University, London, Canada
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public Review):
This paper presents a set of experiments designed to test whether gravity in people's intuitive physics engine is implemented as a simple deterministic representation of gravity or as a Gaussian distribution. The work shows experimentally that the probabilistic representation of gravity does a better job at capturing both human judgments, including biases in stability inferences. The work further shows that Gaussian representations of gravity can evolve in a simple agent-environment reinforcement learning problem setup.
Strengths:
The paper approaches the problem from three different angles in an impressive way. The first is through a direct comparison of human judgments against model predictions. The second is through an analysis of whether the model correctly predicts cognitive illusions. The third is through a computational exploration of how these representations emerge in a reinforcement-learning setup. The idea of approaching the same problem from multiple independent angles, and seeking confirming evidence is laudable.
Weaknesses:
There are two differences between the "natural gravity" account and the "mental gravity" account. The first difference lies in the implementation of gravity. The second, however, is simply that the mental gravity model is integrating more uncertainty into the simulator. In my understanding, adding small amounts of noise to computational models will often increase their fit to human judgments (with softmaxing perhaps being the most common example of this). While counter-intuitive, this is because 'noiseless' models have perfect representations of the stimuli, which is an unrealistic assumption. In the case of intuitive physics, people might have noisy perceptual representations of exactly how flat the table is, the exact location of each block, what small disturbances might be happening in the environment, and so on. The absence of these sources of uncertainty in deterministic models can make them perform in a non-human-like manner.
While all the data presented in the paper is consistent with the possibility that people have a stochastic representation of gravity. It is possible that people have uncertainty over what unobservable forces a block tower might be under (e.g., wind, bumps to the table, etc). Therefore, even if you have a firm belief that gravity goes down, you may want to add noise in your simulations to account for the fact that, in the real world, gravity is almost never the only force acting on an object that has started to move. While the paper acknowledges that such an account would be mathematically equivalent, it does not acknowledge that this raises the question of whether people actually have stochastic representations of gravity.
This alternative account could be particularly important because I believe it might be a more accurate representation of what people believe. I may be wrong, but I believe that it is common to emphasize the probabilistic nature of the models and the importance of implementing forces as distributions (e.g., the concept of 'noisy newtons').
Reviewer #2 (Public Review):
Summary:
Through a set of experiments and model simulations, the authors tested whether the commonly assumed world model of gravity was a faithful replica of the physical world. They found that participants did not model gravity as a single, fixed vector for gravity but instead as a distribution of possible vectors. Surprisingly, the width of this distribution was quite large (~20 degrees). While previous accounts had suggested that this uncertainty was due to perceptual noise or an inferred external perturbation, the authors suggest that this uncertainty simply arises from a noisy distribution of the representation of gravity's direction. A reinforcement learning model with an initial uniform distribution for gravity's direction ultimately converged to a precision in the same order as the human participants, which lends support to the authors' conclusion and suggests that this distribution is learned through experience. What's more, further simulations suggest that representing gravity with such a wide distribution may balance speed and accuracy, providing a potentially normative explanation for the world model with gravity as a distribution.
Strengths:
The authors present surprising findings in a relatively straightforward way in a now classic experimental task. They provide a normative explanation based on a resource-rational framework for why people may have a stochastic world model instead of a deterministic world model.
Weaknesses:
Support for gravity being represented as a Gaussian distribution (stochastic world model), as opposed to perceptual uncertainty or (inferred) external perturbations, is from an RL model simulation. It would be more convincing if the authors could experimentally demonstrate that potential external perturbations did not affect the distribution of gravity.
Reviewer #3 (Public Review):
Summary:
Previous studies suggest that humans may infer objects' stability through a world model that performs mental simulations with a priori knowledge of gravity acting upon objects. In this study, the authors test two alternative hypotheses about the nature of this a priori knowledge. According to the Natural Gravity assumption, the direction of gravity encoded in this world model is straight downwards as in the physical world. According to the alternative Mental Gravity assumption, that gravity direction is encoded in a Gaussian distribution, with the vertical direction as the maximum likelihood. They present two experiments and computer simulations as evidence in support of the Mental Gravity assumption. Their conclusion is that when the brain is tasked to determine the stability of a given structure it runs a mental simulation, termed Mental Gravity Simulation, which averages the estimated temporal evolutions of that structure arising from different gravity directions sampled from a Gaussian distribution.
Weaknesses:
In spite of the fact that the Mental Gravity Simulation (MGS) seems to predict the data of the two experiments, it is an untenable hypothesis. I give the main reason for this conclusion by illustrating a simple thought experiment. Suppose you ask subjects to determine whether a single block (like those used in the simulations) is about to fall. We can think of blocks of varying heights. No matter how tall a block is, if it is standing on a horizontal surface it will not fall until some external perturbation disturbs its equilibrium. I am confident that most human observers would predict this outcome as well. However, the MSG simulation would not produce this outcome. Instead, it would predict a non-zero probability of the block to tip over. A gravitational field that is not perpendicular to the base has the equivalent effect of a horizontal force applied on the block at the height corresponding to the vertical position of the center of gravity. Depending on the friction determined by the contact between the base of the block and the surface where it stands there is a critical height where any horizontal force being applied would cause the block to fall while pivoting about one of the edges at the base (the one opposite to where the force has been applied). This critical height depends on both the size of the base and the friction coefficient. For short objects this critical height is larger than the height of the object, so that object would not fall. But for taller blocks, this is not the case. Indeed, the taller the block the smaller the deviation from a vertical gravitational field is needed for a fall to be expected. The discrepancy between this prediction and the most likely outcome of the simple experiment I have just outlined makes the MSG model implausible. Note also that a gravitational field that is not perpendicular to the ground surface is equivalent to the force field experienced by the block while standing on an inclined plane. For small friction values, the block is expected to slide down the incline, therefore another prediction of this MSG model is that when we observe an object on a surface exerting negligible friction (think of a puck on ice) we should expect that object to spontaneously move. But of course, we don't, as we do not expect tall objects that are standing to suddenly fall if left unperturbed. In summary, a stochastic world model cannot explain these simple observations.
The question remains as to how we can interpret the empirical data from the two experiments and their agreement with the predictions of the stochastic world model if we assume that the brain has internalized a vertical gravitational field. First, we need to look more closely at the questions posed to the subjects in the two experiments. In the first experiment, subjects are asked about how "normal" a fall of a block construction looks. Subjects seem to accept 50% of the time a fall is normal when the gravitational field is about 20 deg away from the vertical direction. The authors conclude that according to the brain, such an unusual gravitational field is possible. However, there are alternative explanations for these findings that do not require a perceptual error in the estimation of the direction of gravity. There are several aspects of the scene that may be misjudged by the observer. First, the 3D interpretation of the scene and the 3D motion of the objects can be inaccurate. Indeed, the simulation of a normal fall uploaded by the authors seems to show objects falling in a much weaker gravitational field than the one on Earth since the blocks seem to fall in "slow motion". This is probably because the perceived height of the structure is much smaller than the simulated height. In general, there are even more severe biases affecting the perception of 3D structures that depend on many factors, for instance, the viewpoint. Second, the distribution of weight among the objects and the friction coefficients acting between the surfaces are also unknown parameters. In other words, there are several parameters that depend on the viewing conditions and material composition of the blocks that are unknown and need to be estimated. The authors assume that these parameters are derived accurately and only that assumption allows them to attribute the observed biases to an error in the estimate of the gravitational field. Of course, if the direction of gravity is the only parameter allowed to vary freely then it is no surprise that it explains the results. Instead, a simulation with a titled angle of gravity may give rise to a display that is interpreted as rendering a vertical gravitational field while other parameters are misperceived. Moreover, there is an additional factor that is intentionally dismissed by the authors that is a possible cause of the fall of a stack of cubes: an external force. Stacks that are initially standing should not fall all of a sudden unless some unwanted force is applied to the construction. For instance, a sudden gust of wind would create a force field on a stack that is equivalent to that produced by a tilted gravitational field. Such an explanation would easily apply to the findings of the second experiment. In that experiment subjects are explicitly asked if a stack of blocks looks "stable". This is an ambiguous question because the stability of a structure is always judged by imagining what would happen to the structure if an external perturbation is applied. The right question should be: "do you think this structure would fall if unperturbed". However, if stability is judged in the face of possible external perturbations then a tall structure would certainly be judged as less stable than a short structure occupying the same ground area. This is what the authors find. What they consider as a bias (tall structures are perceived as less stable than short structures) is instead a wrong interpretation of the mental process that determines stability. If subjects are asked the question "Is it going to fall?" then tall stacks of sound structure would be judged as stable as short stacks, just more precarious.
The RL model used as a proof of concept for how the brain may build a stochastic prior for the direction of gravity is based on very strong and unverified assumptions. The first assumption is that the brain already knows about the force of gravity, but it lacks knowledge of the direction of this force of gravity. The second assumption is that before learning the brain knows the effect of a gravitational field on a stack of blocks. How can the brain simulate the effect of a non-vertical gravitational field on a structure if it has never observed such an event? The third assumption is that from the visual input, the brain is able to figure out the exact 3D coordinates of the blocks. This has been proven to be untrue in a large number of studies. Given these assumptions and the fact that the only parameters the RL model modifies through learning specify the direction of gravity, I am not surprised that the model produces the desired results.
Finally, the argument that the MGS is more efficient than the NGS model is based on an incorrect analysis of the results of the simulation. It is true that 80% accuracy is reached faster by the MGS model than the 95% accuracy level is reached by the NGS model. But the question is: how fast does the NGS model reach 80% accuracy (before reaching the plateau)?