Translation rates of resting and activated T cells in vivo
(A) Depiction of the in vivo RPM-RTA method. Labeled OT-I T cells are first adoptively transferred, followed by VACV-SIINFEKL infection of mice. RTA analysis is performed by intravenous injection of HAR followed by PMY (+/- CHX to prevent leakiness from HAR inhibition alone). Spleens are harvested for RPM analysis on both endogenous and transferred T cells. Schematic designed with Biorender. (B) CFSE-labeled Ly5.2+ (CD45.2+CD45.1-) OT-I T cells were adoptively transferred into Ly5.1 (CD45.1+CD45.2-) mice, which were then infected with VACV-SIINFEKL to activate the OT-I cells. Three days after infection, mice were intravenously injected with HAR simultaneously with PMY for 5 minutes (maximum signal), or first injected with HAR for ∼110, ∼275, or ∼575 seconds before being injected with PMY for 5 minutes. Splenocytes from mice were harvested, surface stained for gating and activation markers as indicated, fixed and permeabilized, and stained for RPM. Gates were CFSElow OT-I CD8+ T cells to measure decay in activated cells, and CD44-CD8+ or CD44-CD4+ T cells to measure decay in resting T cells. The curve was generated by fitting to a one phase exponential decay. Representative of two independent experiments, 2-4 mice per group, with the mean and standard deviation of the calculated half-life decays as indicated. (C) RTA, with the CHX modification, of adoptively transferred OT-I T cells or un-activated host CD8+ T cells in mice infected for 2 or 3 days with VACV-SIINFEKL. 3-4 independent experiments combined, normalized by setting maximum background-subtracted signal to 100.
© 2024, BioRender Inc. Any parts of this image created with BioRender are not made available under the same license as the Reviewed Preprint, and are © 2024, BioRender Inc.