Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorScott LeiserUniversity of Michigan-Ann Arbor, Ann Arbor, United States of America
- Senior EditorBenoit KornmannUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public Review):
In this manuscript entitled "Hexokinase regulates Mondo-mediated longevity via the PPP and organellar dynamics", Laboy and colleagues investigated upstream regulators of MML-1/Mondo, a key transcription factor that regulates aging and metabolism, using the nematode C. elegans and cultured mammalian cells. By performing a targeted RNAi screen for genes encoding enzymes in glucose metabolism, the authors found that two hexokinases, HXK-1 and HXK-2, regulate nuclear localization of MML-1 in C. elegans. The authors showed that knockdown of hxk-1 and hxk-2 suppressed longevity caused by germline-deficient glp-1 mutations. The authors demonstrated that genetic or pharmacological inhibition of hexokinases decreased nuclear localization of MML-1, via promoting mitochondrial β-oxidation of fatty acids. They found that genetic inhibition of hxk-2 changed the localization of MML-1 from the nucleus to mitochondria and lipid droplets by activating pentose phosphate pathway (PPP). The authors further showed that the inhibition of PPP increased the nuclear localization of mammalian MondoA in cultured human cells under starvation conditions, suggesting the underlying mechanism is evolutionarily conserved. This paper provides compelling evidence for the mechanisms by which novel upstream metabolic pathways regulate MML-1/Mondo, a key transcription factor for longevity and glucose homeostasis, through altering organelle communications, using two different experimental systems, C. elegans and mammalian cells. This paper will be of interest to a broad range of biologists who work on aging, metabolism, and transcriptional regulation.
Reviewer #2 (Public Review):
Raymond Laboy et.al explored how transcriptional Mondo/Max-like complex (MML-1/MXL-2) is regulated by glucose metabolic signals using germ-line removal longevity model. They believed that MML-1/MXL-2 integrated multiple longevity pathways through nutrient sensing and therefore screened the glucose metabolic enzymes that regulated MML-1 nuclear localization. Hexokinase 1 and 2 were identified as the most vigorous regulators, which function through mitochondrial beta-oxidation and the pentose phosphate pathway (PPP), respectively. MML-1 localized to mitochondria associated with lipid droplets (LD), and MML-1 nuclear localization was correlated with LD size and metabolism. Their findings are interesting and may help us to further explore the mechanisms in multiple longevity models, however, the study is not complete and the working model remains obscure. For example, the exact metabolites that account for the direct regulation of MML-1 were not identified, and more detailed studies of the related cellular processes are needed.
The identification of responsible metabolites is necessary since multiple pieces of evidence from the study suggests that lipid other than glucose metabolites may be more likely to be the direct regulator of MML-1 and HXK regulate MML-1 indirectly by affecting the lipid metabolism: 1) inhibiting the PPP is sufficient to rescue MML-1 function independent of G6P levels; 2) HXK-1 regulates MML-1 by increasing fatty acid beta-oxidation; 3) LD size correlates with MML-1 nuclear localization and LD metabolism can directly regulate MML-1. The identification of metabolites will be helpful for understanding the mechanism.
Beta-oxidation and the PPP are involved in the regulation of MML-1 by HXK-1 and HXK-2, respectively. But how these two pathways participate in the regulation is not clear. Is it the beta-oxidation rate or the intermediate metabolites that matters? As for the PPP, it provides substrates for nucleotide synthesis and also its product NADPH is essential for redox balance. Is one of the metabolites or the NADPH levels involved in MML-1 regulation? More studies are needed to provide answers to these concerns.