Confirmation of neurogenic lineage and dissecting of NSC molecular heterogeneity in the postnatal human hippocampus
(A) Neurogenic lineage identification was confirmed by cross-species comparison of transcriptomic signatures. Our human data were integrated with published snRNA-seq data from mice, pigs and rhesus macaque by UMAP (Hochgerner et al., 2018, Franjic et al., 2022). astrocyte2(AS2), radial glial cell (RGL), neonatal(N), quiescent neural stem cell (qNSC), adult (Ad), aging (Ag), primed neural stem cell (pNSC), active neural stem cell (aNSC), neuroblast (NB), granule cell (GC), astrocytes (Astro), neuronal intermediate progenitor cell (nIPC).
(B) Expressions of previously reported RGL, nIPC, NB and immature GC markers in the corresponding populations from our human hippocampal snRNA-seq data. RGL, radial glial cell; nIPC, neural intermediate progenitor cell; NB, neuroblast; and immature GC, immature granule cell.
(C) The AS2/qNSC population from neonatal sample was subclustered into three clusters, astrocyte2, qNSC1 and qNSC2.
(D) Heatmap of top 10 genes (p-value < 0.05) specific for astrocytes, qNSC1 and qNSC2 after normalization.
(E and F) Using Gene set scores (average, over genes in the set, of seurat function AddModuleScore) based on previously defined gene sets (Zamanian et al. 2012; Liddelow et al. 2017; Clarke et al. 2018; Hochgerner et al. 2018; Zhong et al. 2020; Franjic et al. 2022) to characterize RGL (E) and astrocytes (F).
(G) UMAP feature plots showing expression distribution of cell type specific genes. Astrocyte markers (S100B and GFAP), radial glial like cell markers (HOPX and LPAR1) and neuron development markers (ST18, STMN1, PROX1 and SIRT2) are shown.
(H and I) Representative GO terms of the top 1000 genes specifically expressed in pNSCs (H) and aNSCs (I). (GO: BP, neural development related GO terms, p<0.05)
(J) Cell-cycle phases of qNSC1, qNSC2, pNSC, aNSC and NB predicted by Cell Cycle Scoring. Each dot represents an individual cell. Steel blue, red and orange dots represent G1, S and G2/M phase cells, respectively