Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorChristopher HuangUniversity of Cambridge, Cambridge, United Kingdom
- Senior EditorMone ZaidiIcahn School of Medicine at Mount Sinai, New York, United States of America
Reviewer #1 (Public Review):
This work reports the use of pulsed high-intensity (1-3 W/cm2) 1 MHz ultrasonic waves to stimulate the secretion of extracellular vesicles (EVs) from skeletal muscle cells (C2C12 myotubes) through the modulation of intracellular calcium, and that these, in turn, regulate the inflammatory response in macrophages.
The authors first checked that the ultrasonic irradiation did not have any adverse effect on the structure (protein content) and function (proliferation and metabolic activity) of the myotubes, and showed an up to twofold increase in EV secretion, which they attributed to an increase in Ca2+ uptake into the cell. Finally, the authors show that the myotubes exposed to the ultrasonic irradiation wherein the EV concentration was found to be elevated led to a significant decrease in expression of IL-1b and IL-6 pro-inflammatory cytokines, therefore leading the authors to assert the potential of the use of ultrasonic irradiation for promoting anti-inflammatory effects on macrophages.
While the manuscript was reasonably clearly written and the methodology and results sound, it is not clear what the real contribution of the work is. The authors' findings - that ultrasonic stimulation is capable of altering intracellular Ca2+ to effect an increase in EV secretion from cells as long as the irradiation does not affect cell viability-is well established (see, for example, Ambattu et al., Commun Biol 3, 553, 2020; Deng et al., Theranostics, 11, 9 2021; Li et al., Cell Mol Biol Lett 28, 9, 2023). Moreover, the authors' own work (Maeshige et al., Ultrasonics 110, 106243, 2021) using the exact same stimulation (including the same parameters, i.e., intensity and frequency) and cells (C2C12 skeletal myotubes) reported this. Similarly, the authors themselves reported that EV secretion from C2C12 myotubes has the ability to regulate macrophage inflammatory response (Yamaguchi et al., Front Immunol 14, 1099799, 2023). It would then stand to reason that a reasonable and logical deduction from both studies is that the ultrasonic stimulation would lead to the same attenuation of inflammatory response in macrophages through enhanced secretion of EVs from the myotubes.
The authors' claim that 'the role of Ca2+ in ultrasound-induced EV release and its intensity-dependency are still unclear', and that the aim of the present work is to clarify the mechanism, is somewhat overstated. That ultrasonic stimulation alters intracellular Ca2+ to lead to EV release, therefore establishing their interdependency and hence demonstrating the mechanism by which EV secretion is enhanced by the ultrasonic stimulation, was detailed in Ambattu et al., Commun Biol 3, 553, 2020. While this was carried out at a slightly higher frequency (10 MHz) and slightly different form of ultrasonic stimulation, the same authors have appeared to since establish that a universal mechanism of transduction across an entire range of frequencies and stimuli (Ambattu, Biophysics Rev 4, 021301, 2023).
Similarly, the anti-inflammatory effects of EVs on macrophages have also been extensively reported (Li et al., J Nanobiotechnol 20, 38, 2022; Lo Sicco et al., Stem Cells Transl Med 6, 3, 2017; Hu et al., Acta Pharma Sin B 11, 6, 2021), including that by the authors themselves in a recent study on the same C2C12 myotubes (Yamaguchi et al., Front Immunol 14, 1099799, 2023). Moreover, the authors' stated aim for the present work - clarifying the mechanism of the anti-inflammatory effects of ultrasound-induced skeletal muscle-derived EVs on macrophages - appears to be somewhat redundant given that they simply repeated the microRNA profiling study they carried out in Yamaguchi et al., Front Immunol 14, 1099799, 2023. The only difference was that a fraction of the EVs (from identical cells) that they tested were now a consequence of the ultrasound stimulation they imposed.
That the authors have found that their specific type of ultrasonic stimulation maintains this EV content (i.e., microRNA profile) is novel, although this, in itself, appears to be of little consequence to the overall objective of the work which was to show the suppression of macrophage pro-inflammatory response due to enhanced EV secretion under the ultrasonic irradiation since it was the anti-inflammatory effects were attributed to the increase in EV concentration and not their content.
Reviewer #2 (Public Review):
Summary:
The authors embarked on a journey to understand the mechanisms and intensity-dependency of ultrasound (US)-induced extracellular vesicle (EV) release from myotubes and the potential anti-inflammatory effects of these EVs on macrophages. This study builds on their prior work from 2021 that initially reported US-induced EV secretion.
Strengths:
1. The finding that US-treated myotube EVs can suppress macrophage inflammatory responses is particularly intriguing, hinting at potential therapeutic avenues in inflammation modulation.
Weaknesses:
1. The exploration of output parameters for US induction appears limited, with only three different output powers (intensities) tested, thus narrowing the scope of their findings.
2. Their claim of elucidating mechanisms seems to be only partially met, with a predominant focus on the correlation between calcium responses and EV release.
3. While the intracellular calcium response is a dynamic activity, the method used to measure it could risk a loss of kinetic information.
4. The inclusion of miRNA sequencing is commendable; however, the interpretation of this data fails to draw clear conclusions, diminishing the impact of this segment.
While the authors have shown the anti-inflammatory effects of US-induced EVs on macrophages, there are gaps in the comprehensive understanding of the mechanisms underlying US-induced EV release. Certain aspects, like the calcium response and the utility of miRNA sequencing, were not fully explored to their potential. Therefore, while the study establishes some findings, it leaves other aspects only partially substantiated.