Mechanically stimulated osteocytes maintain tumor dormancy in bone metastasis of non-small cell lung cancer by releasing small extracellular vesicles

  1. General Practice Centre, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528000, China
  2. Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
  3. Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
  4. Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Michaela Reagan
    Maine Health Institute for Research, Scarborough, United States of America
  • Senior Editor
    Diane Harper
    University of Michigan-Ann Arbor, Ann Arbor, United States of America

Reviewer #1 (Public Review):

Xie and Colleagues propose here to investigate the mechanism by which exercise inhibits bone metastasis progression. The authors describe that osteocyte, sensing mechanical stimulation generated by exercise, inhibit NSCLC cell proliferation and sustain the dormancy thereof by releasing sEVs with tumor suppressor microRNAs. Furthermore, mechanical loading of the tibia inhibited the bone metastasis progression of NSCLC. Interestingly, exercise preconditioning effectively suppressed bone metastasis progression.

Reviewer #2 (Public Review):

In this manuscript, Xie and colleagues investigate the contribution of osteocytes to bone metastasis of non-small cell lung carcinoma (NSCLC) using a combination of clinical samples and in vitro and in vivo data. They find that metastatic NSCLC cells exhibit lower levels of the proliferation marker Ki-67 when located in areas adjacent to the bone surface in both NSCLC patients and an intraosseous animal model of NSCLC. Using in vitro approaches, they show that osteocyte-like cells inhibit the proliferation of NSCLC cells through the secretion of small extracellular vesicles (sEVs). They identify miR-99b-3p as a component of sEVs and demonstrate that miR-99b3p inhibits the proliferation of NSCLC cells by targeting the transcription factor MDM2. Interestingly, the data also shows that mechanical stimulation of osteocytes enhances the inhibitory effect of osteocytes on NSCLC cell proliferation via increasing sEVs release. By performing different in vivo studies, the authors show that tibial loading and moderate exercise (treadmill running), before and after tumor cell inoculation, suppress tumor progression in bone and protect bone mass. Intriguingly, the moderate exercise regime shows additive/synergistic effects with the co-administration of anti-resorptive therapy. These data add to the growing evidence pointing towards osteocytes as important cells of the tumor microenvironment capable of influencing the progression of tumors in bone.

The conclusions of the paper, however, are not well supported by the data, and some critical aspects of image analysis and data analysis need to be clarified and extended.

  1. The histological images are analyzed in a qualitative manner, with no description of the methodology used. In bone metastases, cancer cells are frequently mixed with bone marrow cells. The lack of cell markers to identify NSCLC cells versus bone marrow cells makes the interpretation of the imaging data difficult. The authors rely on KI-67 as a marker of proliferation. Yet, it is intriguing that some osteocytes, non-proliferating cells by definition, are often positive for this marker, which questions the specificity of the staining. To make these results more solid, the authors should have provided the proper immunostaining controls to check for specificity and use additional markers of proliferation.

  2. Adding control groups to fully assess the impact of the in vivo interventions (tibial loading, moderate exercise, anti-resorptive therapy) on bone mass would be needed. The authors should have used naive mice or analyzed the bones from the non-injected contralateral legs. Further, validating the in vivo work with other osteocyte-like cells or primary osteocytes would have strengthened the results.

  3. The data on miRNA99b-3p on NSCLC in Supplementary Figure 3 is not convincing. The positive cells are difficult to see and most of the osteocyte lack nuclei. Better data, in humans and the mouse model, would have helped to confirm that osteocytes produce miRNA99b-3p.

  4. The conclusions of the paper are not fully supported by the data provided. Osteocytes, as well as other bone cells, can respond to mechanical stimulation and thus could virtually be responsible for the protective effects of mechanical loading or moderate exercise. In vivo experiments demonstrating a direct role of osteocytes-produced miRNA99b-3p are needed to support the notion that osteocytes maintain tumor dormancy in NSCLC bone metastasis. Further, the authors solely rely on Ki-67 as a marker of dormancy. Completing this analysis with an assessment of a dormant gene expression signature or in vivo studies assessing tumor dormancy directly would be needed to confirm this notion.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation