Mecp2 Fine-tunes Quiescence Exit by Targeting Nuclear Receptors

  1. Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
  2. State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
  3. Department of Biochemistry, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Di Chen
    Chinese Academy of Sciences, Shenzhen, China
  • Senior Editor
    Jonathan Cooper
    Fred Hutchinson Cancer Research Center, Seattle, United States of America

Reviewer #1 (Public Review):

In the study described in the manuscript, the authors identified Mecp2, a methyl-CpG binding protein, as a key regulator involved in the transcriptional shift during the exit of quiescent cells into the cell cycle. Their data show that Mecp2 levels were remarkably reduced during the priming/initiation stage of partial hepatectomy-induced liver regeneration and that altered Mecp2 expression affected the quiescence exit. Additionally, the authors identified Nedd4 E3 ligase that is required for the downregulation of Mecp2 during quiescence exit. This is an interesting study with well-presented data that supports the authors' conclusions regarding the role of Mecp2 in transcription regulation during the G0/G1 transition. However, the significance of the study is limited by a lack of mechanistic insights into the function of Mecp2 in the process. This weakness can be addressed by identifying the signaling pathway(s) that trigger Mecp2 degradation during the quiescence exit.

Reviewer #2 (Public Review):

In the manuscript by Yang et al titled "Mecp2 fine-tunes quiescent exit by targeting nuclear receptors", the authors found that Mecp, a well-known protein because of its crucial role in neurological disorders, has a cell cycle-dependent ability to negatively regulate quiescent exit by transcriptional activation of metabolic genes while repressing proliferation-related genes. Conceptually, this is an interesting study with very well-executed experiments and controls.

Since the mutation of MeCP2 was identified as the cause of Rett syndrome, the previous reports have been focused on the exhaustive biochemical and functional characterization of this protein. In this study, the authors show that MeCP2 expression is cell-cycle related, and acute reduction of Mecp2 is essential for efficient quiescence exit in cells. They also identified a novel E3 ligase Nedd4 contributes to Mecp2 degradation during G0 exit. These findings are the first description of MeCP2 protein expression during the cell cycle. The variation in MeCP2 levels at different stages of the cell cycle phases should be taken into consideration when examining MeCP2-related disordered disease.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation