Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky

  1. Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
  2. Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
  3. Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
  4. Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
  5. Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
  6. Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Fred Rieke
    University of Washington, Seattle, United States of America
  • Senior Editor
    Joshua Gold
    University of Pennsylvania, Philadelphia, United States of America

Reviewer #1 (Public Review):

Summary: In this study, Franke et al. explore and characterize the color response properties across the primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake-behaving 2P imaging to define the spectral response properties of visual interneurons in Layer 2/3. They find that opponent responses are more prominent at photopic light levels, and diversity in color opponent responses exists across the visual science, with green ON/ UV OFF responses being stronger represented in the upper visual field. This is argued to be relevant for detecting certain features that are more salient when the chromatic space is used, possibly due to noise reductions.

Strengths: The work is well crafted and written and provides a thorough characterization that reveals an uncharacterized diversity of visual properties in V1. I find this characterization important because it reveals how strongly chromatic information can modulate the response properties in V1. In the upper visual field, 25% of the cells differentially relay chromatic information, and one may wonder how this information will be integrated and subsequently used to aid vision beyond the detection of color per see. I personally like the last paragraph of the discussion that highlights this fact.

Weaknesses:

One major point highlighted in this paper is the fact that Green ON/UV OFF responses are not generated in the retina. But glancing through the literature, I saw this is not necessarily true. Fig 1. of Joesch & Meister, a paper cited, shows this can be the case. Thus, I would not emphasize that this wasn't present in the retina. This is a minor point, but even if the retina could not generate these signals, I would be surprised if the diversity of responses would only arise through feed-forward excitation, given the intricacies of cortical connectivity. Thus, I would argue that the argument holds for most of the responses seen in V1; they need to be further processed by cortical circuitries. This takes me to my second point, defining center and surround. The center spot is 37.5 deg of visual angle, more than 1 mm of the retinal surface. That means that all retinal cells, at least half and most likely all of their surrounds will also be activated. Although 37.5 deg is roughly the receptive field size previously determined for V1 neurons, the one-to-one comparison with retinal recording, particularly with their center/surround properties, is difficult. This should be discussed. I assume that the authors tried a similar approach with sparse or dense checker white noise stimuli. If so, it would be interesting if there were better ways of defining the properties of V1 neurons on their complex/simple receptive field properties to define how much of their responses are due to an activation of the true "center" or a coactivation of the surround. Interestingly, at least some of the cells (Fig. 1d, cells 2 and 5) don't have a surround. Could it be that in these cases, the "center" and "surround" are being excited together? How different would the overall statistics change if one used a full-filed flicker stimulus instead of a center/surround stimulus? How stable are the results if the center/surround flicker stimulus is shifted? These results won't change the fact that chromatic coding is present in the VC and that there are clear differences depending on their position, but it might change the interpretation. Thus, I would encourage you to test these differences and discuss them.

Reviewer #2 (Public Review):

Summary: Franke et al. characterize the representation of color in the primary visual cortex of mice and how it changes across the visual field, with a particular focus on how this may influence the ability to detect aerial predators. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet were presented in random combinations. Using a clustering approach, a set of functional cell-types were identified based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have varying spatial distributions in V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

Strengths:
The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

Weaknesses:
While the study presents solid evidence a few weaknesses exist, including the size of the dataset, clarity regarding details of data included in each step of the analysis and discussion of caveats of the work. The results presented here are based on recordings of 3 mice. While the number of neurons recorded is reasonably large (n > 3000) an analysis that tests for consistency across animals is missing. Related to this, it is unclear how many neurons at each stage of the analysis come from the 3 different mice (except for Suppl. Fig 4). Finally, the paper would greatly benefit from a more in depth discussion of the caveats related to the conclusion drawn at each stage of the analysis. This is particularly relevant regarding the caveats related to using spike triggered averages to assess the response preferences of ON-OFF neurons, and the conclusions drawn about the contribution of retinal color opponency.

The authors provide solid evidence to support an asymmetric distribution of color opponent cells in V1 and a reduced color contrast representation in lower light levels. Some statements would benefit from more direct evidence such as the integration of upstream visual signals for color opponency in V1.

Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

Reviewer #3 (Public Review):

This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. Several technical concerns limit how clearly the data support the conclusions. If these issues can be fixed, the paper would make a valuable contribution to how color is coded in mouse V1.

Analysis
The central tool used to analyze the data is a "spike triggered average" of the responses to randomly varying stimuli. There are several steps in this analysis that are not documented, and hence evaluating how well it works is difficult. Central to this is that the paper does not measure spikes. Instead, measured calcium traces are converted to estimated spike rates, which are then used to estimate STAs. There are no raw calcium traces shown, and the approach to estimate spike rates is not described in any detail. Confirming the accuracy of these steps is essential for a reader to be able to evaluate the paper. Further, it is not clear why the linear filters connecting the recorded calcium traces and the stimulus cannot be estimated directly, without the intermediate step of estimating spike rates.

A further issue about the STAs is that the inclusion criterion (correlation of predicted vs measured responses of 0.25) is pretty forgiving. It would be helpful to see a distribution of those correlation values, and some control analyses to check whether the STA is providing a sufficiently accurate measure to support the results (e.g. do the central results hold for the cells with the highest correlations).

Limitations of stimulus choice
The paper relies on responses to a large (37.5 degree diameter) modulated spot and surrounding region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells. As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot (and, e.g., how much of the true neural surround samples the center spot vs the surround region). The impact of these issues on the conclusions is considered briefly at the start of the results but needs to be evaluated in considerably more detail. This is particularly true for retinal ganglion cells given the size of their receptive fields (see also next point).

Comparison with retina
A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. This issue may be handled by the analysis presented in the paper, but if so it needs to be described more clearly.
The paper from which the retina data is taken argues that rod-cone chromatic opponency originates largely in the outer retina. This mechanism would be expected to be shared across retinal outputs. Thus it is not clear how the Green-On/UV-Off vs Green-Off/UV-On asymmetry could originate. This should be discussed.

Residual chromatic cells at low mesopic light levels
The presence of chromatically tuned cells at the lowest light level probed is surprising. The authors describe these conditions as rod-dominated, in which case chromatic tuning should not be possible. This again is discussed only briefly. It either reflects the presence of an unexpected pathway that amplifies weak cone signals under low mesopic conditions such that they can create spectral opponency or something amiss in the calibrations or analysis. Data collected at still lower light levels would help resolve this.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation