Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorChristoph BuettnerRutgers Robert Wood Johnson Medical School, New Brunswick, United States of America
- Senior EditorDavid JamesUniversity of Sydney, Sydney, Australia
Reviewer #1 (Public Review):
Summary:
In their manuscript, Chim et al. identify an association of rare loss-of-function (LOF) SLC39A5 variants with increased circulating zink levels and decreased T2D risk and complement these observations with a notably comprehensive analysis of metabolically challenged (genetically or diet-induced) Slc39a5-/- mice that demonstrate enhanced hepatic zinc levels, improved liver function, reduced hyperglycemia, partial resistance to NASH induction, and likely involvement of AMPK and AKT signaling.
Strengths:
Overall, the work appears well designed, executed, clearly presented (although navigating the 16 supplementary figures and 6 supplementary tables can be a bit of a challenge), and supports the authors' main conclusions.
Weaknesses:
Nevertheless, two major concerns pertain to the characterization of LOF SLC39A5 variants as well as the seeming absence of a "pancreatic phenotype" in Slc39a5-/- mice that contrasts with earlier reports including impaired glucose tolerance and glucose-stimulated insulin secretion in mice lacking Slc39a5 specifically in beta cells; these concerns should be addressed experimentally and by more extensive discussion of previously published Slc39a5-/- mouse models, respectively.
Reviewer #2 (Public Review):
Summary:
This study links rare human loss of function mutations in the zinc transporter family member SLC39A5 to increased circulating and hepatic concentrations of this trace element. Beneficial metabolic changes were observed in a corresponding convincing mouse model relevant to the development of NASH.
Strengths:
Authors combine human exome sequencing data, meta-analysis of four large European cohorts, and a patient recall approach to link the rare loss of function variants of SLC39A5 to the phenotype and protection from T2DM.
Using a SLC39A5-null mouse model challenged either by cross-breeding with Lepr-/- mice or diet-induced obesity they unravel the metabolic impact of elevated circulating and hepatic zinc concentration with respect to T2DM, glucose homeostasis, hepatic steatosis, and NASH development. Some mechanistic aspects and a remarkable sex difference in the outcome are identified from mouse ex vivo readouts and supported by in vitro hepatocyte cellular studies. Authors present evidence that increased hepatic zinc concentrations inhibit zinc-regulated phosphatases resulting in activation of AMPK and AKT signalling with consequences for lipid and glucose metabolism and insulin sensitivity.
Weaknesses:
The reasons for the observed sex differences in the metabolic consequences of SLC39A5 inactivation in the mouse models remain unclear. While heterozygous rare SLC39A5 variants show distinct phenotypes only SLC39A5-null mice and no heterozygous mice are studied. The role of SLC39A5 in pancreatic islets and on insulin secretion remains unclear because authors do not address data published recently that claim a relevant role of SLC39A5 in b-cell function and glucose tolerance.