Martinize2 and Vermouth: Unified Framework for Topology Generation

  1. Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
  2. CiTIUS Intelligent Technologies Research Centre, Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela, A Coruña, Spain.
  3. Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France.

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Qiang Cui
    Boston University, Boston, United States of America
  • Senior Editor
    Qiang Cui
    Boston University, Boston, United States of America

Reviewer #1 (Public Review):

Summary:

In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programing library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

Strengths:

The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs. In addition, the documentation website provided by the authors is very informative, allowing users to get quickly started with Vermouth.

Weaknesses:

Although the Vermouth library is designed as a general tool for topology generation for molecular simulations, only its applications with MARTINI have been demonstrated in the current study. Thus, the claimed generality of Vermouth remains to be exmained. The authors may consider to point out this in their manuscript.

Reviewer #2 (Public Review):

This work introduces a Vermouth library framework to enhance software development within the Martini community. Specifically, it presents a Vermouth-powered program, Martinize2, for generating coarse-grained structures and topologies from atomistic structures. In addition to introducing the Vermouth library and the Martinize2 program, this paper illustrates how Martinize2 identifies atoms, maps them to the Martini model, generates topology files, and identifies protonation states or post-translational modifications. Compared with the prior version, the authors provide a new figure to show that Martinize2 can be applied to various molecules, such as proteins, cofactors, and lipids. To demonstrate the general application, Martinize2 was used for converting 73% of 87,084 protein structures from the template library, with failed cases primarily blamed on missing coordinates.

I was hoping to see some fundamental changes in the resubmitted version. To my disappointment, the manuscript remains largely unchanged (even the typo I pointed out previously was not fixed). I do not doubt that Martinize2 and Vermouth are useful to the Martini community, and this paper will have some impact. The manuscript is very technical and limited to the Martini community. The scientific insight for the general coarse-grained modeling community is unclear. The goal of the work is ambitious (such as high-throughput simulations and whole-cell modeling), but the results show just a validation of Martinize2. This version does not reverse my previous impression that it is incremental. As I pointed out in my previous review (and no response from the authors), all the issues associated with the Martini model are still there, e.g. the need for ENM. In this shape, I feel this manuscript is suitable for a specialized journal in computational biophysics or stays as part of the GitHub repository.

Reviewer #3 (Public Review):

The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications. After the revisions provided by the authors, I recommend minor revision.

The authors have addressed most of my concerns provided previously. Specifically, showcasing the capability of coarse-graining other types of molecules (Figure 7) is a useful addition, especially for the booming field of therapeutic macrocycles.

My only additional concern is that to justify Martinize2 and Vermouth as a "high-throughput" method, the speed of these tools needs to be addressed in some form in the manuscript as a guideline to users.

Author response:

The following is the authors’ response to the original reviews.

Reviewer #1 (Public Review):

Summary:

In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programming library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

Strengths:

The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs.

Weaknesses:

Although the Vermouth library appears promising as a general tool for topology generation, there is insufficient information in the current manuscript and a lack of documentation that may allow users to easily apply this library. More detailed explanation of various classes such as Processor, Molecule, Mapping, ForceField etc. that are mentioned is still needed, including inputs, output and associated operations of these classes. Some simple demonstration of application of these classes would be of great help to users. The formats of internal databases used to describe reference structures and force fields may also need to be clarified. This is particularly important when the Vermouth needs to be adapted for other AA/CG force fields and other MD engines.

We thank the reviewer for pointing out the strengths of the presented work and agree that one of the current limitations is the lack of documentation about the library. In the revision, we point more clearly to the documentation page of the Vermouth library, which contains more detailed information on the various processors. The format of the internal databases has also been added to the documentation page. Providing a simple demonstration of applications of these classes is a great suggestion, however, we believe that it is more convenient to provide those in the form of code examples in the documentation or for instance jupyter notebooks rather than in the paper itself.

The successful automation of the Vermouth relies on the reference structures that need to be pre-determined. In case of the study of 43 small ligands, the reference structures and corresponding mapping to MARTINIcompatible representations for all these ligands have been already defined in the M3 force field and added into the Vermouth library. However, the authors need to comment on the scenario where significantly more ligands need to be considered and other force fields need to be used as CG representations with a lack of reference structures and mapping schemes.

We acknowledge that vermouth/martinize2 is not capable of automatically generating Martini mappings or parameters on the fly for unknown structures that are not part of the database. However, this capability is not the purpose of the program, which is rather to distribute and manage existing parameters. Unlike atomistic force fields, which frequently have automated topology builders, Martini parameters are usually obtained for a set of specific molecules at a time and benchmarked accordingly. As more parameters are obtained by researchers, they can be added to the vermouth library via the GitHub interface in a controlled manner. This process allows the database to grow and in our opinion will quickly grow beyond the currently implemented parameters. Furthermore, the API of Vermouth is set up in a way that it can easily interface with automated topology builders which are currently being developed. Hence this limitation in our view does not diminish the applicability of vermouth to high-throughput applications with many ligands. The framework is existing and works, now only more parameters have to be added.

Reviewer #2 (Public Review):

Summary:

This manuscript by Kroon, Grunewald, Marrink and coworkers present the development of Vermouth library for coarse grain assignment and parameterization and an updated version of python script, the Martinize2 program, to build Martini coarse grained (CG) models, primarily for protein systems.

Strengths:

In contrast to many mature and widely used tools to build all-atom (AA) models, there are few well-accepted programs for CG model constructions and parameterization. The research reported in this manuscript is among the ongoing efforts to build such tools for Martini CG modeling, with a clear goal of high-throughput simulations of complex biomolecular systems and, ultimately, whole-cell simulations. Thus, this manuscript targets a practical problem in computational biophysics. The authors see such an effort to unify operations like CG mapping, parameterization, etc. as a vital step from the software engineering perspective.

Weaknesses:

However, the manuscript in this shape is unclear in the scientific novelty and appears incremental upon existing methods and tools. The only "validation" (more like an example application) is to create Martini models with two protein structure sets (I-TASSER and AlphaFold). The success rate in building the models was only 73%, while the significant failure is due to incomplete AA coordinates. This suggests a dependence on the input AA models, which makes the results less attractive for high-throughput applications (for example, preparation/creation of the AA models can become the bottleneck). There seems to be an improvement in considering the protonation state and chemical modification, but convincing validation is still needed. Besides, limitations in the existing Martini models remain (like the restricted dynamics due to the elastic network, the electrostatic interactions or polarizability).

We thank the reviewer for pointing out the strengths of the presented work, but respectfully disagree with the criticism that the presented work is only incremental upon existing methods and tools. All MD simulations of structured proteins regardless of the force field or resolution rely on a decent initial structure to produce valid results. Therefore, failure upon detection of malformed protein input structures is an essential feature for any high-throughput pipeline working with proteins, especially considering the computational cost of MD simulations. We note that programs such as the first version of Martinize generate reasonable-looking input parameters that lead to unphysical simulations and wasted CPU hours.

The alpha-fold database for which we surveyed 200,000 structures only contained 7 problematic structures, which means that the success rate was 99% for this database. This example simply shows that users potentially have to add the step of fixing atomistic protein input structures, if they seek to run a high-throughput pipeline.

But at least they can be assured that martinize2 will make sure to check that no issues persist.

Furthermore, we note that the manuscript does not aim to validate or improve the existing Martini (protein) models. All example cases presented in the paper are subject to the limitations of the protein models for the reason that martinize2 is only the program to generate those parameters. Future improvements in the protein model, which are currently underway, will immediately be available through the program to the broader community.

Reviewer #3 (Public Review):

Summary:

The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications.

Strengths:

A large scale protein simulation was attempted, showing strong evidence that authors' algorithms work smoothly.

The authors described the algorithms in detail and shared the open-source code under Apache 2.0 license on GitHub. This allows both reproducibility of extended usefulness within the field. These algorithms are potentially impactful if the authors can address some of the issues listed below.

We thank the reviewer for pointing out the strengths.

Weaknesses:

One major caveat of the manuscript is that the authors claim their algorithms aim to "process any type of molecule or polymer, be it linear, cyclic, branched, or dendrimeric, and mixtures thereof" and "enable researchers to prepare simulation input files for arbitrary (bio)polymers". However, the examples provided by the manuscript only support one type of biopolymer, i.e. proteins. Despite the authors' recommendation of using polyply along with martinize2/vermouth, no concrete evidence has been provided to support the authors' claim. Therefore, the manuscript must be modified to either remove these claims or include new evidence.

We acknowledge that the current manuscript is largely protein-centric. To some extent this results from the legacy of martinize version 1, which was also only used for proteins. However, to show that martinize2 also works for cyclic as well as branched molecules we implemented two additional test cases and updated formerly Figure 6 and now Figure 7. Crown ether is used as an example of a cyclic molecule whereas a small branched polyethylene molecule is a test case for branching. Needless to say both molecules are neither proteins nor biomolecules.

Method descriptions on Martinize2 and graph algorithms in SI should be core content of the manuscript. I argue that Figure S1 and Figure S2 are more important than Figure 3 (protonation state). I recommend the authors can make a workflow chart combining Figure S1 and S2 to explain Martinize2 and graph algorithms in main text.

The reviewer's critique is fair. Given the already rather large manuscript, we tried to strike a balance between describing benchmark test cases, some practical usage information (e.g. the Histidine modification), and the algorithmic library side of the program. In particular, we chose to add the figure on protonation state, because how to deal with protonation states—in particular, Histidines—was amongst the top three raised issues by users on our GitHub page. Due to this large community interest, we consider the figure equally important. However, we moved Figure S1 from the Supporting Information into the manuscript and annotated the already mentioned text with the corresponding panels to more clearly illustrate the underlying procedure.

In Figure 3 (protonation state), the figure itself and the captions are ambiguous about whether at the end the residue is simply renamed from HIS to HIP, or if hydrogen is removed from HIP to recover HIS.

Using either of the two routes yields the same parameters in the end, which are for the protonated Histidine. In the second route, the extra hydrogen on Histidine is detected as an additional atom and therefore a different logic flow is triggered. Atoms are never removed, but only compounded to a base block plus modification atoms. We adjusted the figure caption to point this out more clearly.

In "Incorporating a Ligand small-molecule Database", the authors are calling for a community effort to build a small-molecule database. Some guidance on when the current database/algorithm combination does or does not work will help the community in contributing.

Any small molecule not part of the database will not work. However, martinize2 will quickly identify if there are missing components of the system and alert the users. At that point, the users can decide to make their files, guided by the new documentation pages.

A speed comparison is needed to compare Martinize2 and Martinize.

We respectfully disagree that a speed comparison is needed. We already alerted in the manuscript discussion that martinize2 is slower, since it does more checks, is more general, and does not only implement a single protein model.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation