Overcoming the nutritional immunity by engineering iron scavenging bacteria for cancer therapy

  1. Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
  2. Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
  3. Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Yelena Ginzburg
    Icahn School of Medicine at Mount Sinai, New York, United States of America
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public Review):

In this manuscript, Huang and colleagues explored the role of iron in bacterial therapy for cancer. Using proteomics, they revealed the upregulation of bacterial genes that uptake iron, and reasoned that such regulation is an adaptation to the iron-deficient tumor microenvironment. Logically, they engineered E. Coli strains with enhanced iron-uptake efficiency, and showed that these strains, together with iron scavengers, suppress tumor growth in a mouse model. Lastly, they reported the tumor suppression by IroA-E. Coli provides immunological memory via CD8+ T cells. In general, I find the findings in the manuscript novel and the evidence convincing.

1. Although the genetic and proteomic data are convincing, would it be possible to directly quantify the iron concentration in (1) E. Coli in different growth environments, and (2) tumor microenvironment? This will provide the functional consequences of upregulating genes that import iron into the bacteria.

2. Related to 1, the experiment to study the synergistic effect of CDG and VLX600 (lines 139-175) is very nice and promising, but one flaw here is a lack of the measurement of iron concentration. Therefore, a possible explanation could be that CDG acts in another manner, unrelated to iron uptake, that synergizes with VLX600's function to deplete iron from cancer cells. Here, a direct measurement of iron concentration will show the effect of CDG on iron uptake, thus complementing the missing link.

3. Lines 250-268: Although statistically significant, I would recommend the authors characterize the CD8+ T cells a little more, as the mechanism now seems quite elusive. What signals or memories do CD8+ T cells acquire after IroA-E. Coli treatment to confer their long-term immunogenicity?

4. Perhaps this goes beyond the scope of the current manuscript, but how broadly applicable is the observed iron-transport phenomenon in other tumor models? I would recommend the authors to either experimentally test it in another model or at least discuss this question.

Reviewer #2 (Public Review):

Summary:

The authors provide strong evidence that bacteria, such as E. coli, compete with tumor cells for iron resources and consequently reduce tumor growth. When sequestration between LCN2 and bacterobactin is blocked by upregulating CDG(DGC-E. coli) or salmochelin(IroA-E.coli), E. coli increase iron uptake from the tumor microenvironment (TME) and restrict iron availability for tumor cells. Long-term remission in IroA-E.coli treated mice is associated with enhanced CD8+ T cell activity. Additionally, systemic delivery of IroA-E.coli shows a synergistic effect with chemotherapy reagent oxaliplatin to reduce tumor growth.

Strengths:

It is important to identify the iron-related crosstalk between E. coli and TME. Blocking lcn2-bacterobactin sequestration by different strategies consistently reduces tumor growth.

Weaknesses:

As engineered E.coli upregulate their function to uptake iron, they may increase the likelihood of escaping from nutritional immunity (LCN2 becomes insensitive to sequester iron from the bacteria). Would this raise the chance of developing sepsis? Do authors think that it is safe to administrate these engineered bacteria in mice or humans?

Reviewer #3 (Public Review):

Summary:

Based on their observation that tumor has an iron-deficient microenvironment, and the assumption that nutritional immunity is important in bacteria-mediated tumor modulation, the authors postulate that manipulation of iron homeostasis can affect tumor growth. They show that iron chelation and engineered DGC-E. coli have synergistic effects on tumor growth suppression. Using engineered IroA-E. coli that presumably have more resistance to LCN2, they show improved tumor suppression and survival rate. They also conclude that the IroA-E. coli treated mice develop immunological memory, as they are resistant to repeat tumor injections, and these effects are mediated by CD8+ T cells. Finally, they show synergistic effects of IroA-E. coli and oxaliplatin in tumor suppression, which may have important clinical implications.

Strengths:

This paper uses straightforward in vitro and in vivo techniques to examine a specific and important question of nutritional immunity in bacteria-mediated tumor therapy. They are successful in showing that manipulation of iron regulation during nutritional immunity does affect the virulence of the bacteria, and in turn the tumor. These findings open future avenues of investigation, including the use of different bacteria, different delivery systems for therapeutics, and different tumor types.

Weaknesses:

-- There is no discussion of the cancer type and why this cancer type was chosen. Colon cancer is not one of the more prominently studied cancer types for LCN2 activity. While this is a proof-of-concept paper, there should be some recognition of the potential different effects on different tumor types. For example, this model is dependent on significant LCN production, and different tumors have variable levels of LCN expression. Would the response of the tumor depend on the role of iron in that cancer type? For example, breast cancer aggressiveness has been shown to be influenced by FPN levels and labile iron pools.
-- Are the effects on tumor suppression assumed to be from E. coli virulence, i.e. Does the higher number of bacteria result in increased immune-mediated tumor suppression? Or are the effects partially from iron status in the tumor cells and the TME?
-- If the effects are iron-related, could the authors provide some quantification of iron status in tumor cells and/or the TME? Could the proteomic data be queried for this data?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation