Equivalent excitability through different sodium channels and implications for the analgesic efficacy of selective drugs

  1. Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
  2. Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
  3. Department of Physiology, University of Toronto, Toronto, ON, Canada

Editors

  • Reviewing Editor
    Teresa Giraldez
    University of La Laguna, La Laguna, Spain
  • Senior Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America

Reviewer #1 (Public Review):

Summary:
In this work, Xie, Prescott, and colleagues have reevaluated the role of Nav1.7 in nociceptive sensory neuron excitability. They find that nociceptors can make use of different sodium channel subtypes to reach equivalent excitability. The existence of this degeneracy is critical to understanding neuronal physiology under normal and pathological conditions and could explain why Nav subtype-selective drugs have failed in clinical trials. More concretely, nociceptor repetitive spiking relies on Nav1.8 at DIV0 (and probably under normal conditions in vivo), but on Nav1.7 and Nav1.3 at DIV4-7 (and after inflammation in vivo).

The conclusions of this paper are mostly well supported by data, and these findings should be of broad interest to scientists working on pain, drug development, neuronal excitability, and ion channels.

Strengths:
The authors have employed elegant electrophysiology experiments (including specific pharmacology and dynamic clamp) and computational simulations to study the excitability of a subpopulation of DRGs that would very likely match with nociceptors (they take advantage of using transgenic mice to detect Nav1.8-expressing neurons). They make a strong point showing the degeneracy that occurs at the ion channel expression level in nociceptors, adding this new data to previous observations in other neuronal types. They also demonstrate that the different Nav subtypes functionally overlap and are able to interchange their "typical" roles in action potential generation. As Xie, Prescott, and colleagues argue, the functional implications of the degenerate character of nociceptive sensory neuron excitability need to be seriously taken into account regarding drug development and clinical trials with Nav subtype-selective inhibitors.

Weaknesses:
The next comments are minor criticisms, as the major conclusions of the paper are well substantiated. Most of the results presented in the article have been obtained from experiments with DRG neuron cultures, and surely there is a greater degree of complexity and heterogeneity about the degeneracy of nociceptors excitability in the "in vivo" condition. Indeed, the authors show in Figures 7 and 8 data that support their hypothesis and an increased Nav1.7's influence on nociceptor excitability after inflammation, but also a higher variability in the nociceptors spiking responses. On the other hand, DRG neurons targeted in this study (YFP (+) after crossing with Nav1.8-Cre mice) are >90% nociceptors, but not all nociceptors express Nav1.8 in vivo. As shown by Li et al., 2016 ("Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity"), there is a high heterogeneity of neuron subtypes within sensory neurons. Therefore, some caution should be taken when translating the results obtained with the DRG neuron cultures to the more complex "in vivo" panorama.

Although the authors have focused their attention on Nav channels, it should be noted that degeneracy concerning other ion channels (such as potassium ion channels) could also impact the nociceptor excitability. The action potential AHP in Figure 1, panel A is very different comparing the DIV0 (blue) and DIV4-7 examples. Indeed, the conductance density values for the AHP current are higher at DIV0 than at DIV7 in the computational model (supplementary table 5). The role of other ion channels in order to obtain equivalent excitability should not be underestimated.

Reviewer #2 (Public Review):

Summary:
The authors have noted in preliminary work that tetrodotoxin (TTX), which inhibits NaV1.7 and several other TTX-sensitive sodium channels, has differential effects on nociceptors, dramatically reducing their excitability under certain conditions but not under others. Partly because of this coincidental observation, the aim of the present work was to re-examine or characterize the role of NaV1.7 in nociceptor excitability and its effects on drug efficacy. The manuscript demonstrates that a NaV1.7-selective inhibitor produces analgesia only when nociceptor excitability is based on NaV1.7. More generally and comprehensively, the results show that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes (NaV 1.3/1.7 and 1.8). This can cause widespread changes in the role of a particular subtype over time. The degenerate nature of nociceptor excitability shows functional implications that make the assignment of pathological changes to a particular NaV subtype difficult or even impossible.

Thus, the analgesic efficacy of NaV1.7- or NaV1.8-selective agents depends essentially on which NaV subtype controls excitability at a given time point. These results explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

Strengths:
The above results are clearly and impressively supported by the experiments and data shown. All methods are described in detail, presumably allow good reproducibility, and were suitable to address the corresponding question. The only exception is the description of the computer model, which should be described in more detail.

The results showing that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and expression of different NaV subtypes are of great importance in the fields of basic and clinical pain research and sodium channel physiology and pharmacology, but also for a broad readership and community. The degenerate nature of nociceptor excitability, which is clearly shown and well supported by data has large functional implications. The results are of great importance because they may explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

In summary, the authors achieved their overall aim to enlighten the role of NaV1.7 in nociceptor excitability and the effects on drug efficacy. The data support the conclusions, although the clinical implications could be highlighted in a more detailed manner.

Weaknesses:
As mentioned before, the results that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes are impressive. However, there is some "gap" between the DRG culture experiments and acutely dissociated DRGs from mice after CFA injection. In the extensive experiments with cultured DRG neurons, different time points after dissociation were compared. Although it would have been difficult for functional testing to examine additional time points (besides DIV0 and DIV4-7), at least mRNA and protein levels should have been determined at additional time points (DIV) to examine the time course or whether gene expression (mRNA) or membrane expression (protein) changes slowly and gradually or rapidly and more abruptly. It would also be interesting to clarify whether the changes that occur in culture (DIV0 vs. DIV4-7) are accompanied by (pro-)inflammatory changes in gene and protein expression, such as those known for nociceptors after CFA injection. This would better link the following data demonstrating that in acutely dissociated nociceptors after CFA injection, the inflammation-induced increase in NaV1.7 membrane expression enhances the effect of (or more neurons respond to) the NaV1.7 inhibitor PF-71, whereas fewer CFA neurons respond to the NaV1.8 inhibitor PF-24.

The results shown explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have important implications for the future development of Nav-selective analgesics. However, this point, which is also evident from the title of the manuscript, is discussed only superficially with respect to clinical outcomes. In particular, the promising role of NaV1.7, which plays a role in nociceptor hyperexcitability but not in "normal" neurons, should be discussed in light of clinical results and not just covered with a citation of a review. Which clinical results of NaV1.7-selective drugs can now be better explained and how?

Another point directly related to the previous one, which should at least be discussed, is that all the data are from rodents, or in this case from mice, and this should explain the clinical data in humans. Even if "impediment to translation" is briefly mentioned in a slightly different context, one could (as mentioned above) discuss in more detail which human clinical data support the existence of "equivalent excitability through different sodium channels" also in humans.

Although speculative, it would be interesting for readers to know whether a treatment regimen based on "time since injury" with NaV1.7 and NaV1.8 inhibitors might offer benefits. Based on the data, could one hypothesize that NaV1.7 inhibitors are more likely to benefit (albeit in the short term) in patients with neuropathic pain with better patient selection (e.g., defined interval between injury and treatment)?

Reviewer #3 (Public Review):

Summary:
In this study, the authors used patch-clamp to characterize the implication of various voltage-gated Na+ channels in the firing properties of mouse nociceptive sensory neurons. They report that depending on the culture conditions NaV1.3, NaV1.7, and NaV1.8 have distinct contributions to action potential firing and that similar firing patterns can result from distinct relative roles of these channels. The findings may be relevant for the design of better strategies targeting NaV channels to treat pain.

Strengths:
The paper addresses the important issue of understanding, from an interesting perspective, the lack of success of therapeutic strategies targeting NaV channels in the context of pain. Specifically, the authors test the hypothesis that different NaV channels contribute in a plastic manner to action potential firing, which may be the reason why it is difficult to target pain by inhibiting these channels. The experiments seem to have been properly performed and most conclusions are justified. The paper is concisely written and easy to follow.

Weaknesses:

  1. The most critical issue I find in the manuscript is the claim that different combinations of NaV channels result in equivalent excitability. For example, in the Abstract it is stated that: "...we show that nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8". The gating properties of these channels are not identical, and therefore their contributions to excitability should not be the same. I think that the culprit of this issue is that the authors reach their conclusion from the comparison of the (average) firing rate determined over 1 s current stimulation in distinct conditions. However, this is not the only parameter that determines how sensory neurons convey information. For instance, the time dependence of the instantaneous frequency, the actual firing pattern, may be important too. Moreover, the use of 1 s of current stimulation might not be sufficient to characterize the firing pattern if one wants to obtain conclusions that could translate to clinical settings (i.e., sustained pain). A neuron in which NaV1.7 is the main contributor is expected to have a damping firing pattern due to cumulative channel inactivation, whereas another depending mainly on NaV1.8 is expected to display more sustained firing. This is actually seen in the results of the modelling.

  2. In Fig. 1, is 100 nM TTX sufficient to inhibit all TTX-sensitive NaV currents? More common in literature values to fully inhibit these currents are between 300 to 500 nM. The currents shown as TTX-sensitive in Fig. 1D look very strange (not like the ones at Baseline DIV4-7). It seems that 100 nM TTX was not enough, leading to an underestimation of the amplitude of the TTX-sensitive currents.

  3. Page 8, the authors conclude that "Inflammation caused nociceptors to become much more variable in their reliance of specific NaV subtypes". However, how did the authors ensure that all neurons tested were affected by the CFA model? It could be that the heterogeneity in neuron properties results from distinct levels of effects of CFA.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation