Action potential transmission in the single neuron model.
(A) Cartoon of the model with a close-up view of unperturbed, demyelinated, and remyelinated segments (not to scale). The paranodes, juxtaparanodes, and internodes (shown in different shades of red) were insulated by myelin lamellae, adjacent to unmyelinated nodes (dark gray). During demyelination, lamellae were removed from a subset of segments; middle cartoon shows two lamellae remaining, indicating 50% lamellae removed relative to an unperturbed myelinated segment. During remyelination, select myelinated segments were replaced with two shorter myelinated segments separated by a new node; bottom cartoon shows remyelination with 50% of lamellae restored relative to unperturbed segments. At right are shown membrane potential traces simulated at the initial segment (top, dashed line) and near the distal end of one axon (here, 1.9 cm long) in the unperturbed, demyelinated, and remyelinated cases. Traces correspond to signals in a distal node and subsequent paranode, juxtaparanode, and internode respectively (colors indicating the axonal sections as in left panels). Demyelinating 75% of segments by removing 50% of their lamellae resulted in a 70% reduction in conduction velocity, and failure of one AP. Remyelination of all affected segments with the same 50% of lamellae recovered the failed AP, and 98% of the CV delay relative to the demyelinated case (in one of the 30 simulated trials). (B) Close-up view of an AP simulated in the distal end of the unperturbed axon: suprathreshold in the node and subthreshold along the myelinated segment, indicating saltatory conduction. (C) Distribution of the 50 models of the cohort across two dimensions of parameter space: myelinated segment length and axon diameter. Grayscale shade of each model represents the mean CV change across three demyelination conditions: 25, 50, 75% of segments losing lamellae, averaged over 30 randomized trials and lamellae removal conditions.